Non-Markovian Inverse Hawkes Processes
Abstract
:1. Introduction
1.1. The General Hawkes Process
1.2. Inverse Markovian Hawkes Process
1.3. Main Results of This Paper
2. Proofs of the Main Results
2.1. Some Auxiliary Results
2.2. Proof of the Law of Lagre Number
2.3. Proof of Central Limit Theorem
3. Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hawkes, A.G. Spectra of some self-exciting and mutually exciting point process. Biometrika 1971, 58, 83–90. [Google Scholar] [CrossRef]
- Zhu, L. Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims. Insur. Math. Econom. 2013, 53, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.H. Point process models of single-neuron discharges. J. Comput. Neurosci. 1996, 3, 275–299. [Google Scholar] [CrossRef] [PubMed]
- Mohler, G.O.; Short, M.B.; Brantingham, P.J.; Schoenberg, F.P.; Tita, G.E. Self-exciting point process modelling of crime. J. Am. Stat. Assoc. 2011, 106, 100–108. [Google Scholar] [CrossRef]
- Hawkes, A.G.; Adamopoulos, L. Cluster models for earthquakesregional comparisons. Bull. Int. Statist. Inst. 1973, 45, 454–461. [Google Scholar]
- Reynaud-Bouret, P.; Schbath, S. Adaptive estimation for Hawkes processes; application to genome analysis. Ann. Statist. 2010, 38, 2781–2822. [Google Scholar] [CrossRef]
- Errais, E.; Giesecke, K.; Goldberg, L. Affine Point Processes and Portfolio Credit Risk. SIAM J. Financ. Math. 2010, 1, 642–665. [Google Scholar] [CrossRef] [Green Version]
- Duffie, D.; Filipović, D.; Schachermayer, W. Affine processes and applications in finance. Ann. Appl. Probab. 2003, 13, 984–1053. [Google Scholar] [CrossRef]
- Dassios, A.; Zhao, H. A Dynamic Contagion Process. Adv. Appl. Probab. 2011, 43, 814–846. [Google Scholar] [CrossRef]
- Hawkes, A.G.; Oakes, D. A cluster process representation of self-exciting process. J. Appl. Prob. 1974, 11, 493–503. [Google Scholar] [CrossRef]
- Karabash, D. On Stability of Hawkes process. arXiv 2013, arXiv:1201.1573. [Google Scholar]
- Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volumes I and II. [Google Scholar]
- Kelbert, M.; Leonenko, N.; Belitsky, V. On the Bartlett spectrum of randomized Hawkes processes. Math. Commun. 2013, 18, 393–407. [Google Scholar]
- Bacry, E.; Delattre, S.; Hoffmann, M.; Muzy, J.F. Scaling limits for Hawkes processes and application to financial statistics. Stoch. Process. Appl. 2012, 123, 2475–2499. [Google Scholar] [CrossRef]
- Bordenave, C.; Torrisi, G.L. Large deviations of Poisson cluster processes. Stoch. Models. 2007, 23, 593–625. [Google Scholar] [CrossRef]
- Brémaud, P.; Massoulié, L. Stability of nonlinear Hawkes processes. Ann. Probab. 1996, 24, 1563–1588. [Google Scholar] [CrossRef]
- Zhu, L. Large deviations for Markovian nonlinear Hawkes processes. Ann. Appl. Probab. 2015, 25, 548–581. [Google Scholar] [CrossRef]
- Zhu, L. Process-level large deviations for nonlinear Hawkes point processes. Ann. Inst. H. Poincaré Probab. Statist. 2014, 50, 845–871. [Google Scholar] [CrossRef]
- Zhu, L. Central limit theorem for nonlinear Hawkes processes. J. Appl. Prob. 2013, 50, 760–771. [Google Scholar] [CrossRef]
- Zhu, L. Moderate deviations for Hawkes processes. Statist. Probab. Lett. 2013, 83, 885–890. [Google Scholar] [CrossRef]
- Jaisson, T.; Rosenbaum, M. Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab. 2015, 25, 600–631. [Google Scholar] [CrossRef] [Green Version]
- Jaisson, T.; Rosenbaum, M. Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes. Ann. Appl. Probab. 2016, 26, 2860–2882. [Google Scholar] [CrossRef] [Green Version]
- Fierro, R.; Leiva, V.; Møller, J. The Hawkes process with different exciting functions and its asymptotic behavior. J. Appl. Prob. 2015, 52, 37–54. [Google Scholar]
- Karabash, D.; Zhu, L. Limit theorems for marked Hawkes processes with application to a risk model. Stoch. Model. 2015, 31, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Mehrdad, B.; Zhu, L. On the Hawkes Process with Different Exciting Functions. arXiv 2015, arXiv:1403.0994. [Google Scholar]
- Zhu, L. Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps. J. Appl. Prob. 2014, 51, 699–712. [Google Scholar] [CrossRef] [Green Version]
- Seol, Y. Limit theorem for inverse process Tn of linear Hawkes process. Acta Math. Sin. Engl. Ser. 2017, 33, 51–60. [Google Scholar] [CrossRef]
- Seol, Y. Limit theorems of discrete Hawkes Processes. Statist. Probab. Lett. 2015, 99, 223–229. [Google Scholar] [CrossRef]
- Wang, H. Limit theorems for a discrete-time marked Hawkes process. arXiv 2020, arXiv:2003.02810. [Google Scholar] [CrossRef]
- Wang, H. Large and moderate deviations for a discrete-time marked Hawkes process. arXiv 2020, arXiv:2003.05772. [Google Scholar] [CrossRef]
- Seol, Y. Moderate deviations for Marked Hawkes Processes. Acta Math. Sin. Engl. Ser. 2017, 33, 1297–1304. [Google Scholar] [CrossRef]
- Seol, Y. Limit theorems for the compensator of Hawkes Processes. Statist. Probab. Lett. 2017, 127, 165–172. [Google Scholar] [CrossRef]
- Gao, F.; Zhu, L. Some asymptotic results for nonlinear Hawkes processes. Stoch. Process. Appl. 2018, 128, 4051–4077. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhu, L. Limit theorems for Markovian Hawkes processes with a large initial intensity. Stoch. Process. Appl. 2018, 128, 3807–3839. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhu, L. Large deviations and applications for Markovian Hawkes processes with a large initial intensity. Bernoulli 2018, 24, 2875–2905. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhu, L. Functional central limit theorem for stationary Hawkes processes and its application to infinite-serve queues. Queueing Syst. 2018, 90, 161–206. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhou, X.; Zhu, L. Tranform Analysis for Hawkes processes with applications. Quant. Financ. 2018, 18, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, S.; Filimonov, V.; Sorrette, D. The Hawkes process with renewal immigration & its estimation with an EM algorithm. Comput. Stat. Data Anal. 2016, 94, 120–135. [Google Scholar]
- Seol, Y. Limit theorems for an inverse Markovian Hawkes Processes. Statist. Probab. Lett. 2019, 155, 108580. [Google Scholar] [CrossRef]
- Seol, Y. Asymptotics for an extended inverse Markovian Hawkes Process. J. Korean Math. Soc. 2021, 58, 819–833. [Google Scholar]
- Massoulié, L. Stability results for a general class of interacting point processes dynamics., applications. Stoch. Process. Appl. 1998, 75, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Jacod, J.; Shiryaev, A.N. Limit Theorems for Stochastic Processes; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seol, Y. Non-Markovian Inverse Hawkes Processes. Mathematics 2022, 10, 1413. https://doi.org/10.3390/math10091413
Seol Y. Non-Markovian Inverse Hawkes Processes. Mathematics. 2022; 10(9):1413. https://doi.org/10.3390/math10091413
Chicago/Turabian StyleSeol, Youngsoo. 2022. "Non-Markovian Inverse Hawkes Processes" Mathematics 10, no. 9: 1413. https://doi.org/10.3390/math10091413
APA StyleSeol, Y. (2022). Non-Markovian Inverse Hawkes Processes. Mathematics, 10(9), 1413. https://doi.org/10.3390/math10091413