Analytical Solutions to Minimum-Norm Problems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Formulation of the Optimization Problems
2.2. Supporting Vectors
2.3. Riesz Representation Theorem on Hilbert Spaces
3. Results
3.1. Analytical Solution of Problems 1 and 2 in the Hilbert Space Context
- 1.
- 2.
- The above min is attained at .
- 3.
- If , then .
3.2. Analytical Solution of Problem 7 When
3.3. Partial Solution of Problem 3
- ⊆
- Fix an arbitrary . We will show that . For every , is in the feasible region of (11) since ; therefore,Now, if we take a sequence such that , we obtain from (12) that . On the other hand, , that is . As a consequence, , meaning that . Finally, notice that
- ⊇
- Take any . In the first place, , so is in the feasible region of problem (11), that is is a feasible solution. Next, take y as another feasible solution of (11). Then, ; hence,This shows that ; in other words, is an optimal solution
3.4. Analytical Solution of Problems 5 and 6 in the Hilbert Space Context
- 1.
- If , then , and it is attained at any element of .
- 2.
- If T has dense range, then . Hence, Problem 11 has a solution if and only if .
- This is a simple and trivial exercise.
- Suppose that T has a dense range, that is the closure of is K. There exists a sequence such that converges to k. This means that . Next, if Problem 11 has a solution , then , which implies that . Conversely, suppose that , that is there exists with . Then, , so it is clear that .
- 1.
- 2.
- The above min is attained at any element of .
- 3.
- is bounded if and only if .
4. Discussion
4.1. Bounded Tykhonov Regularization
- and . As a consequence, , so . Finally, by calling again on Theorem 2(2), , so is the element of the minimum norm of , reaching the contradiction that .
- and . This is impossible because we have already proven that .
4.2. Precise Tykhonov Regularization
4.3. A Generalization of Theorem 5
5. Conclusions
- Problem 1 ⊆ Problem 7⊆ Problem 2.
- Problem 3 = Problem 9⊆ Problem 4.
- Problem 8 ⊆ Problem 10⊆ Problem 4 (assuming ).
- Problem 8 ⊆ Problem 3 (assuming ).
- Problem 5 ⊆ Problem 11⊆ Problem 6.
- Problem 12 ⊆ Problem 14⊆ Problem 13.
- Problem 15 ⊆ Problem 17⊆ Problem 16.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
The following abbreviation is used in this manuscript: | |
MRI | Magnetic Resonance Imaging |
Appendix A. Code for Problem 1
Appendix A.1. Pseudocode
- Find such that (solve ).
- Find a basis of .
- Find a basis of .
- Take as an ordered basis of .
- Find the coordinates of with respect to B.
- Define .
Appendix A.2. MATLAB Code
- function [sol] = MRI(G,g)
- x_0 = G\g; % Pseudocode (1)
- n = length(x_0);
- K = null(G); % Pseudocode (2)
- s = rank(K);
- O = null(K’); % Pseudocode (3)
- B = [K,O]; % Pseudocode (4)
- X = B\x_0; % Pseudocode (5)
- coord = X(s+1:n,1);
- sol = O*coord; % Pseudocode (6)
- end
Appendix B. Code for Problem 1 When m = 1
Appendix B.1. Pseudocode
- Find .
Appendix B.2. MATLAB Code
- function [sol] = fMRI(G,g)
- a = norm(G’)
- b = g/a^2
- sol = b*G’ % Pseudocode (1)
- end
Appendix C. Code for Problem 12
Appendix C.1. Pseudocode
- Find a basis of .
- Find a basis of .
- Take as an ordered basis of .
- Find the coordinates of g with respect to B.
- Define .
- Apply .
Appendix C.2. MATLAB Code
- function [sol] = bTR(G,g)
- m = size(G);
- K = null(G’); % Pseudocode (1)
- s = rank(K);
- O = null(K’); % Pseudocode (2)
- B = [K,O]; % Pseudocode (3)
- X = B\g; % Pseudocode (4)
- coord = X(s+1:m,1);
- p = O*coord; % Pseudocode (5)
- sol = MRI(G,p); % Pseudocode (6)
- end
Appendix D. Code for Problem 15
Appendix D.1. Pseudocode
- Define .
- Define .
- Find such that (solve ).
- Define .
Appendix D.2. MATLAB Code
- function[sol] = pTR(G,g,a)
- x_0 = bTR(G,g); % Pseudocode (1)
- d = norm(x_0); % Pseudocode (2)
- X = null(G);
- x_1 = X(:,1); % Pseudocode (3)
- sol = x_0 + sqrt(a^2-d^2)*x_1/norm(x_1); % Pseudocode (4)
- end
References
- Cobos-Sánchez, C.; García-Pacheco, F.J.; Moreno-Pulido, S.; Sáez-Martínez, S. Supporting vectors of continuous linear operators. Ann. Funct. Anal. 2017, 8, 520–530. [Google Scholar] [CrossRef]
- García-Pacheco, F.J.; Naranjo-Guerra, E. Supporting vectors of continuous linear projections. Int. J. Funct. Anal. Oper. Theory Appl. 2017, 9, 85–95. [Google Scholar] [CrossRef]
- James, R.C. Characterizations of reflexivity. Studia Math. 1964, 23, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Lindenstrauss, J. On operators which attain their norm. Isr. J. Math. 1963, 1, 139–148. [Google Scholar] [CrossRef]
- Mititelu, Ş. Optimality and duality for invex multi-time control problems with mixed constraints. J. Adv. Math. Stud. 2009, 2, 25–35. [Google Scholar]
- Mititelu, Ş.; Treanţă, S. Efficiency conditions in vector control problems governed by multiple integrals. J. Appl. Math. Comput. 2018, 57, 647–665. [Google Scholar] [CrossRef]
- Treanţă, S.; Mititelu, Ş. Duality with (ρ,b)-quasiinvexity for multidimensional vector fractional control problems. J. Inf. Optim. Sci. 2019, 40, 1429–1445. [Google Scholar] [CrossRef]
- Treanţă, S.; Mititelu, Ş. Efficiency for variational control problems on Riemann manifolds with geodesic quasiinvex curvilinear integral functionals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 15. [Google Scholar] [CrossRef]
- Bishop, E.; Phelps, R.R. A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 1961, 67, 97–98. [Google Scholar] [CrossRef] [Green Version]
- Bishop, E.; Phelps, R.R. The support functionals of a convex set. In Proceedings of the Symposia in Pure Mathematics. Am. Math. Soc. 1963, 7, 27–35. [Google Scholar]
- Choi, J.W.; Kim, M.K. Multi-Objective Optimization of Voltage-Stability Based on Congestion Management for Integrating Wind Power into the Electricity Market. Appl. Sci. 2017, 7, 573. [Google Scholar] [CrossRef] [Green Version]
- Susowake, Y.; Masrur, H.; Yabiku, T.; Senjyu, T.; Motin Howlader, A.; Abdel-Akher, M.; Hemeida, A.M. A Multi-Objective Optimization Approach towards a Proposed Smart Apartment with Demand-Response in Japan. Energies 2019, 13, 127. [Google Scholar] [CrossRef] [Green Version]
- Zavala, G.R.; García-Nieto, J.; Nebro, A.J. Qom—A New Hydrologic Prediction Model Enhanced with Multi-Objective Optimization. Appl. Sci. 2019, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Cobos Sánchez, C.; Garcia-Pacheco, F.J.; Guerrero Rodriguez, J.M.; Hill, J.R. An inverse boundary element method computational framework for designing optimal TMS coils. Eng. Anal. Bound. Elem. 2018, 88, 156–169. [Google Scholar] [CrossRef]
- Moreno-Pulido, S.; Garcia-Pacheco, F.J.; Cobos-Sanchez, C.; Sanchez-Alzola, A. Exact Solutions to the Maxmin Problem max∥Ax∥ Subject to ∥Bx∥≤1. Mathematics 2020, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.C.; Rodriguez, J.M.G.; Olozábal, Á.Q.; Blanco-Navarro, D. Novel TMS coils designed using an inverse boundary element method. Phys. Med. Biol. 2016, 62, 73–90. [Google Scholar] [CrossRef]
- Sanchez, C.C.; Bowtell, R.W.; Power, H.; Glover, P.; Marin, L.; Becker, A.A.; Jones, A. Forward electric field calculation using BEM for time-varying magnetic field gradients and motion in strong static fields. Eng. Anal. Bound. Elem. 2009, 33, 1074–1088. [Google Scholar] [CrossRef]
- Marin, L.; Power, H.; Bowtell, R.W.; Cobos Sanchez, C.; Becker, A.A.; Glover, P.; Jones, I.A. Numerical solution of an inverse problem in magnetic resonance imaging using a regularized higher-order boundary element method. In Boundary Elements and Other Mesh Reduction Methods XXIX; WIT Press: Southampton, UK, 2007; Volume 44, pp. 323–332. [Google Scholar] [CrossRef] [Green Version]
- Marin, L.; Power, H.; Bowtell, R.W.; Cobos Sanchez, C.; Becker, A.A.; Glover, P.; Jones, A. Boundary element method for an inverse problem in magnetic resonance imaging gradient coils. CMES Comput. Model. Eng. Sci. 2008, 23, 149–173. [Google Scholar]
- Moreno-Pulido, S.; Sánchez-Alzola, A.; García-Pacheco, F. Revisiting the minimum-norm problem. J. Inequal. Appl. 2022, 22, 1–11. [Google Scholar] [CrossRef]
- García-Pacheco, F.J. Lineability of the set of supporting vectors. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 41. [Google Scholar] [CrossRef]
- Sánchez-Alzola, A.; García-Pacheco, F.J.; Naranjo-Guerra, E.; Moreno-Pulido, S. Supporting vectors for the ℓ1-norm and the ℓ∞-norm and an application. Math. Sci. 2021, 15, 173–187. [Google Scholar] [CrossRef]
- Garcia-Pacheco, F.J.; Cobos-Sanchez, C.; Moreno-Pulido, S.; Sanchez-Alzola, A. Exact solutions to max∥x∥=1∑i=1∞∥Ti(x)∥2 with applications to Physics, Bioengineering and Statistics. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 105054. [Google Scholar] [CrossRef]
- Cobos-Sánchez, C.; Garcia-Pacheco, F.J.; Guerrero-Rodriguez, J.M.; Garcia-Barrachina, L. Solving an IBEM with supporting vector analysis to design quiet TMS coils. Eng. Anal. Bound. Elem. 2020, 117, 1–12. [Google Scholar] [CrossRef]
- Cobos-Sánchez, C.; Vilchez-Membrilla, J.A.; Campos-Jiménez, A.; García-Pacheco, F.J. Pareto Optimality for Multioptimization of Continuous Linear Operators. Symmetry 2021, 13, 661. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Jiménez, A.; Vílchez-Membrilla, J.A.; Cobos-Sánchez, C.; García-Pacheco, F.J. Analytical Solutions to Minimum-Norm Problems. Mathematics 2022, 10, 1454. https://doi.org/10.3390/math10091454
Campos-Jiménez A, Vílchez-Membrilla JA, Cobos-Sánchez C, García-Pacheco FJ. Analytical Solutions to Minimum-Norm Problems. Mathematics. 2022; 10(9):1454. https://doi.org/10.3390/math10091454
Chicago/Turabian StyleCampos-Jiménez, Almudena, José Antonio Vílchez-Membrilla, Clemente Cobos-Sánchez, and Francisco Javier García-Pacheco. 2022. "Analytical Solutions to Minimum-Norm Problems" Mathematics 10, no. 9: 1454. https://doi.org/10.3390/math10091454
APA StyleCampos-Jiménez, A., Vílchez-Membrilla, J. A., Cobos-Sánchez, C., & García-Pacheco, F. J. (2022). Analytical Solutions to Minimum-Norm Problems. Mathematics, 10(9), 1454. https://doi.org/10.3390/math10091454