Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials
Abstract
:1. Introduction
2. Conformable Derivative
- 1.
- for
- 2.
- is a constant,
- 3.
- 4.
3. Traveling Wave Equation
3.1. Tanh-Coth Method
3.2. Special Cases
3.2.1. Nonlinear Heat Equation
3.2.2. Fisher’s Equation
3.3. Newell-Whitehead Equation
4. The Influence of Noise
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an A+B→C reaction–subdiffusion process. Phys. Rev. E. 2004, 69, 036126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raberto, M.; Scalas, E.; Mainardi, F. Waiting-times and returns in high-frequency financial data: An empirical study. Phys. A Stat. Mech. Appl. 2002, 314, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Wyss, W. The fractional Black–Scholes equation. Fract. Calc. Appl. Anal. 2000, 3, 51–61. [Google Scholar]
- Yuste, S.B.; Lindenberg, K. Subdiffusion-limited A+A reactions. Phys. Rev. Lett. 2001, 87, 118301. [Google Scholar] [CrossRef] [Green Version]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker—Planck equation. Phys. Rev. E 2000, 61, 132–138. [Google Scholar] [CrossRef]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker—Planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1936, 7, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Malflict, W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 1992, 60, 650–654. [Google Scholar] [CrossRef]
- Britton, N.F. Reaction diffusion equations and their Applications to Biology; Academic Press: London, UK, 1986. [Google Scholar]
- Canosa, J. Diffusion in nonlinear multiplication media. J Math Phys. 1969, 186, 2–9. [Google Scholar]
- Aronson, D.J.; Weinberg, H.F. Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation; Springer: New York, NY, USA, 1988. [Google Scholar]
- Frank, D.A. Diffusion and Heat Exchange in Chemical Kinetics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Tuckwell, H.C. Introduction to Theoretical Neurobiology; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 1962, 50, 2061–2070. [Google Scholar] [CrossRef]
- Kastenberg, W.E.; Chambré, P.L. On the stability of nonlinear space-dependent reactor kinetics. Nucl. Sci. Eng. 1968, 31, 67–79. [Google Scholar] [CrossRef]
- FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 1955, 17, 257–278. [Google Scholar] [CrossRef]
- Allen, S.; Cahn, J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979, 27, 1085–1095. [Google Scholar] [CrossRef]
- Shah, A.; Sabir, M.; Qasim, M.; Bastain, P. Efficient numerical scheme for solving the Allen-Cahn equation. Numer. Methods Partial. Differ. Equ. 2018, 34, 1820–1833. [Google Scholar] [CrossRef]
- Benes, M.; Chalupecky, V.; Mikula, K. Geometrical image segmentation by the Allen–Cahn equation. Appl. Numer. Math. 2004, 51, 187–205. [Google Scholar] [CrossRef]
- Zammit, M.C.; Fursa, D.V.; Bray, I. Electron scattering from the molecular hydrogen ion and its isotopologues. Phys. Rev. A 2014, 90, 022711. [Google Scholar] [CrossRef]
- Zeitz, M.; Wolff, K.; Stark, H. Active Brownian particles moving in a random Lorentz gas. Eur. Phys. J. E 2017, 40, 23. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.; Sabir, M.; Peter, B. An efficient time-stepping scheme for numerical simulation of dendritic crystal growth. Eur. J. Comput. Mech. 2017, 25, 475–488. [Google Scholar] [CrossRef]
- Bulut, H.; Atas, S.S.; Baskonus, H.M. Some novel exponential function structures to the Cahn-Allen equation. Comput. Math. Eng. Sci. 2016, 3, 1240886. [Google Scholar] [CrossRef]
- Ahmad, H.; Seadawy, A.R.; Khan, T.A.; Thounthong, P. Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. J. Taibah Univ. Sci. 2020, 14, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.; Kim, J. An explicit hybrid finite difference scheme for the Allen—Cahn equation. J. Comput. Appl. Math. 2018, 340, 247–255. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 2004, 154, 713–723. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 2007, 187, 1131–1142. [Google Scholar] [CrossRef]
- Wang, X.Y. Exact and explicit solitary wave solutions for the generalized Fisher equation. Phys. Lett. A 1988, 131, 277–279. [Google Scholar] [CrossRef]
- Mohammed, W.W. Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions. Math. Methods Appl. Sci. 2015, 38, 4867–4878. [Google Scholar] [CrossRef]
- Blömker, D.; Mohammed, W.W. Amplitude equations for SPDEs with quadratic nonlinearities. Electron. J. Probab. 2009, 14, 2527–2550. [Google Scholar] [CrossRef]
- Blömker, D.; Mohammed, W.W. Amplitude equations for SPDEs with cubic nonlinearities. Stoch. Int. J. Probab. Stoch. Process. 2013, 85, 181–215. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, W.W.; Blömker, D. Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations. J. Stoch. Anal. Appl. 2016, 34, 961–978. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, W.W.; Blömker, D.; Klepel, K. Multi-Scale analysis of SPDEs with degenerate additive noise. J. Evol. Equ. 2014, 14, 273–298. [Google Scholar] [CrossRef] [Green Version]
- Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The Impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-Coth method. Mathematics 2022, 10, 817. [Google Scholar] [CrossRef]
- Albosaily, S.; Mohammed, W.W.; EHamza, A.; El-Morshedy, M.; Ahmad, H. The exact solutions of the stochastic fractional-space Allen—Cahn equation. Open Phys. 2022, 20, 23–29. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Ahmad, H.; Hamza, A.E.; ALy, E.S.; El-Morshedy, M.; Elabbasy, E.M. The exact solutions of the stochastic Ginzburg—Landau equation. Results Phys. 2021, 23, 103988. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, W.W.; Alshammari, M.; Cesarano, C.; Albadrani, S.; El-Morshedy, M. Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials. Mathematics 2022, 10, 1458. https://doi.org/10.3390/math10091458
Mohammed WW, Alshammari M, Cesarano C, Albadrani S, El-Morshedy M. Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials. Mathematics. 2022; 10(9):1458. https://doi.org/10.3390/math10091458
Chicago/Turabian StyleMohammed, Wael W., Mohammed Alshammari, Clemente Cesarano, Sultan Albadrani, and M. El-Morshedy. 2022. "Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials" Mathematics 10, no. 9: 1458. https://doi.org/10.3390/math10091458
APA StyleMohammed, W. W., Alshammari, M., Cesarano, C., Albadrani, S., & El-Morshedy, M. (2022). Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials. Mathematics, 10(9), 1458. https://doi.org/10.3390/math10091458