Exponential Stability for the Equations of Porous Elasticity in One-Dimensional Bounded Domains
Abstract
:1. Introduction
2. Technical Lemmas
3. Exponential Stability
4. General Comments and Open Problems
- (a)
- The case when is an interesting problem to investigate. It would not be easy to obtain an exponential stability result; perhaps setting might help. This is the same for the case .
- (b)
- The case when the term is nonlinear, that is, , is also an interesting problem to consider.
- (c)
- Another interesting problem is to consider the more general system proposed by Munoz et al. [1]The necessary assumption to guarantee the positivity of the internal energy of system (37) isIn addition, the following assumption
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz, J.E.; Pamplona, P.X.; Quintanilla, R. On decay and analyticity in viscoelastic solids with voids by means of dissipative coupling. Math. Mech. Solids 2013, 18, 837–848. [Google Scholar] [CrossRef]
- Júnior, D.A.; Ramos, A.J.A.; Freitas, M.M.; Santos, M.J.D.; Arwadi, T.E. Polynomial stability for the equations of porous elasticity in one-dimensional bounded domains. Math. Mech. Solids 2021, 27, 10812865211019074. [Google Scholar] [CrossRef]
- Quintanilla, R.; Ueda, Y. Decay structures for the equations of porous elasticity in one-dimensional whole space. J. Dyn. Differ. Equ. 2020, 32, 1669–1685. [Google Scholar] [CrossRef]
- Quintanilla, R. Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 2003, 16, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Apalara, T.A. Exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech. Math. 2017, 70, 363–372, Erratum in Q. J. Mech. Math. 2017, 70, 553–555. [Google Scholar] [CrossRef]
- Magańa, A.; Quintanilla, R. On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 2006, 43, 3414–3427. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.J.A.; Júnior, D.A.; Freitas, M.M.; Dos Santos, M.J. A new exponential decay result for one-dimensional porous dissipation elasticity from second spectrum viewpoint. Appl. Math. Lett. 2020, 101, 106061. [Google Scholar] [CrossRef]
- Miranville, A.; Quintanilla, R. Exponential decay in one-dimensional type III thermoelasticity with voids. Appl. Math. Lett. 2019, 94, 30–37. [Google Scholar] [CrossRef]
- Apalara, T.A. A general decay for a weakly nonlinearly damped porous system. J. Dyn. Control Syst. 2019, 25, 311–322. [Google Scholar] [CrossRef]
- Apalara, T.A. General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 2019, 469, 457–471. [Google Scholar] [CrossRef]
- Feng, B.; Apalara, T.A. Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 2019, 470, 1108–1128. [Google Scholar] [CrossRef]
- Santos, M.L.; Jùnior, D.A. On porous-elastic system with localized damping. Z. Angew. Math. Phys. 2016, 67, 1–18. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Fareh, A. Exponential decay for linear damped porous thermoelastic systems with second sound. Discret. Contin. Dyn. Syst.-B 2015, 20, 599. [Google Scholar] [CrossRef]
- Pamplona, P.X.; Munoz, J.E.; Quintanilla, R. On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 2011, 379, 682–705. [Google Scholar] [CrossRef]
- Muñoz, J.E.; Quintanilla, R. On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 2008, 338, 1296–1309. [Google Scholar] [CrossRef] [Green Version]
- Soufyane, A. Energy decay for Porous-thermo-elasticity systems of memory type. Appl. Anal. 2008, 87, 451–464. [Google Scholar] [CrossRef]
- Pamplona, P.X.; Rivera, J.E.M.; Quintanilla, R. Analyticity in porous-thermoelasticity with microtemperatures. J. Math. Anal. Appl. 2012, 394, 645–655. [Google Scholar] [CrossRef]
- Casas, P.S.; Quintanilla, R. Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 2005, 32, 652–658. [Google Scholar] [CrossRef] [Green Version]
- Casas, P.S.; Quintanilla, R. Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 2005, 43, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.L.; Campelo, A.D.S.; Oliveira, M.L.S. On porous-elastic systems with Fourier law. Appl. Anal. 2019, 98, 1181–1197. [Google Scholar] [CrossRef]
- Pamplona, P.X.; Rivera, J.E.M.; Quintanilla, R. Stabilization in elastic solids with voids. J. Math. Anal. Appl. 2009, 350, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Apalara, T.A. On the stability of porous-elastic system with microtemparatures. J. Therm. Stress. 2019, 42, 265–278. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, T. Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion. Syst. Control Lett. 2020, 140, 104699. [Google Scholar] [CrossRef]
- Zhu, Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans. Autom. Control 2018, 64, 3764–3771. [Google Scholar] [CrossRef]
- Djellali, F.; Labidi, S.; Taallah, F. General decay of porous elastic system with thermo-viscoelastic damping. Eurasian J. Math. Comput. Appl. 2022, 9, 31–43. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Pinto, L.; Santos, R.F. Numerical analysis of a porous–elastic model for convection enhanced drug delivery. J Comput. Appl. Math. 2022, 399, 113719. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apalara, T.A.; Ige, A.O. Exponential Stability for the Equations of Porous Elasticity in One-Dimensional Bounded Domains. Mathematics 2022, 10, 1597. https://doi.org/10.3390/math10091597
Apalara TA, Ige AO. Exponential Stability for the Equations of Porous Elasticity in One-Dimensional Bounded Domains. Mathematics. 2022; 10(9):1597. https://doi.org/10.3390/math10091597
Chicago/Turabian StyleApalara, Tijani A., and Aminat O. Ige. 2022. "Exponential Stability for the Equations of Porous Elasticity in One-Dimensional Bounded Domains" Mathematics 10, no. 9: 1597. https://doi.org/10.3390/math10091597