Preface to “Mathematical Methods, Modelling and Applications”
- i.
- Observations obtaining data and Pattern Recognition.
- ii.
- Hypothesis, identification of variables. Building the Mathematical Model.
- iii.
- Resolution of the Model and applications.
Funding
Conflicts of Interest
References
- Mandrikova, O.; Fetisova, N.; Polozov, Y. Hybrid Model for Time Series of Complex Structure with ARIMA Components. Mathematics 2021, 9, 1122. [Google Scholar] [CrossRef]
- Lin, C.-T.; Chiang, C.-Y. Developing and Applying a Selection Model for Corrugated Box Precision Printing Machine Suppliers. Mathematics 2021, 9, 68. [Google Scholar] [CrossRef]
- Pedroche, F.; Conejero, J.A. Corrected Evolutive Kendall’s τ Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists. Mathematics 2020, 8, 1828. [Google Scholar] [CrossRef]
- Shirokanev, A.; Ilyasova, N.; Andriyanov, N.; Zamytskiy, E.; Zolotarev, A.; Kirsh, D. Modeling of Fundus Laser Exposure for Estimating Safe Laser Coagulation Parameters in the Treatment of Diabetic Retinopathy. Mathematics 2021, 9, 967. [Google Scholar] [CrossRef]
- de la Poza, E.; Jódar, L.; Merello, P. Modeling Political Corruption in Spain. Mathematics 2021, 9, 952. [Google Scholar] [CrossRef]
- Chen-Charpentier, B. Stochastic Modeling of Plant Virus Propagation with Biological Control. Mathematics 2021, 9, 456. [Google Scholar] [CrossRef]
- Ibáñez, J.; Alonso, J.; Sastre, J.; Defez, E.; Alonso-Jordá, P. Advances in the Approximation of the Matrix Hyperbolic Tangent. Mathematics 2021, 9, 1219. [Google Scholar] [CrossRef]
- Diz-Mellado, E.; Rubino, S.; Fernández-García, S.; Gómez-Mármol, M.; Rivera-Gómez, C.; Galán-Marín, C. Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction. Mathematics 2021, 9, 1142. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.-Y.; Lu, X.-C.; Yang, Z.-X.; He, X.-T. Steady Fluid–Structure Coupling Interface of Circular Membrane under Liquid Weight Loading: Closed-Form Solution for Differential-Integral Equations. Mathematics 2021, 9, 1105. [Google Scholar] [CrossRef]
- Berriochoa, E.; Cachafeiro, A.; Rábade, H.G.; García-Amor, J. Mechanical Models for Hermite Interpolation on the Unit Circle. Mathematics 2021, 9, 1043. [Google Scholar] [CrossRef]
- Lantarón, S.; Merchán, S. The Dirichlet-to-Neumann Map in a Disk with a One-Step Radial Potential: An Analytical and Numerical Study. Mathematics 2021, 9, 794. [Google Scholar] [CrossRef]
- Alhama, I.; García-Ros, G.; Icardi, M. Non-Stationary Contaminant Plumes in the Advective-Diffusive Regime. Mathematics 2021, 9, 725. [Google Scholar] [CrossRef]
- Saha, J.; Bück, A. Conservative Finite Volume Schemes for Multidimensional Fragmentation Problems. Mathematics 2021, 9, 635. [Google Scholar] [CrossRef]
- Tung, M. The Relativistic Harmonic Oscillator in a Uniform Gravitational Field. Mathematics 2021, 9, 294. [Google Scholar] [CrossRef]
- Casabán, M.; Company, R.; Jódar, L. Reliable Efficient Difference Methods for Random Heterogeneous Diffusion Reaction Models with a Finite Degree of Randomness. Mathematics 2021, 9, 206. [Google Scholar] [CrossRef]
- Cortés, J.-C.; López-Navarro, E.; Romero, J.-V.; Roselló, M.-D. Approximating the Density of Random Differential Equations with Weak Nonlinearities via Perturbation Techniques. Mathematics 2021, 9, 204. [Google Scholar] [CrossRef]
- Company, R.; Egorova, V.N.; Jódar, L. Quadrature Integration Techniques for Random Hyperbolic PDE Problems. Mathematics 2021, 9, 160. [Google Scholar] [CrossRef]
- Cordero, A.; Villalba, E.G.; Torregrosa, J.R.; Triguero-Navarro, P. Convergence and Stability of a Parametric Class of Iterative Schemes for Solving Nonlinear Systems. Mathematics 2021, 9, 86. [Google Scholar] [CrossRef]
- Fuentes, C.; Chávez, C.; Brambila, F. Relating Hydraulic Conductivity Curve to Soil-Water Retention Curve Using a Fractal Model. Mathematics 2020, 8, 2201. [Google Scholar] [CrossRef]
- Chen, H.; Liu, L.; Ma, J. Analysis of Generalized Multistep Collocation Solutions for Oscillatory Volterra Integral Equations. Mathematics 2020, 8, 2004. [Google Scholar] [CrossRef]
- Fuentes, C.; Chávez, C.; Quevedo, A.; Trejo-Alonso, J.; Fuentes, S. Modeling of Artificial Groundwater Recharge by Wells: A Model Stratified Porous Medium. Mathematics 2020, 8, 1764. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jódar, L.; Company, R. Preface to “Mathematical Methods, Modelling and Applications”. Mathematics 2022, 10, 1607. https://doi.org/10.3390/math10091607
Jódar L, Company R. Preface to “Mathematical Methods, Modelling and Applications”. Mathematics. 2022; 10(9):1607. https://doi.org/10.3390/math10091607
Chicago/Turabian StyleJódar, Lucas, and Rafael Company. 2022. "Preface to “Mathematical Methods, Modelling and Applications”" Mathematics 10, no. 9: 1607. https://doi.org/10.3390/math10091607
APA StyleJódar, L., & Company, R. (2022). Preface to “Mathematical Methods, Modelling and Applications”. Mathematics, 10(9), 1607. https://doi.org/10.3390/math10091607