Scalar Field Cosmology from a Modified Poisson Algebra
Abstract
:1. Introduction
2. Modified Poisson Algebra
3. Modified Friedmann Equations
3.1. Vacuum Case
3.2. Including Matter
4. Dynamical Systems’ Analysis in the Vacuum Case
4.1. Analysis of the 2D Flow
4.1.1. Case
4.1.2. Case
4.2. The 1D Reduced System
5. Dynamical Systems’ Analysis by Including Matter
5.1. The 3D System
5.1.1. Case
5.1.2. Case
5.2. Reduced 2D System
5.2.1. Case
5.2.2. Case
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The 3-D power spectrum of galaxies from the SDSS. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef] [Green Version]
- Kowalsk, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Balland, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophys. J. 2008, 686, 749. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.; et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2009, 180, 330. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys. 2014, 571, A15. [Google Scholar]
- Padmanabhan, T. Cosmological constant—The weight of the vacuum. Phys. Rep. 2003, 380, 235. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Valentino, E.D.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Reiss, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Grav. 2021, 38, 153001. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.-.S. Implications of a cosmological constant varying as R**(-2). Phys. Rev. D 1990, 41, 695–698, Erratum in Phys. Rev. D 1992, 45, 4728. [Google Scholar] [CrossRef]
- Basilakos, S.; Plionis, M.; Solà, S. Hubble expansion & Structure Formation in Time Varying Vacuum Models. Phys. Rev. D 2009, 80, 3511. [Google Scholar]
- Wetterich, C. The Cosmon model for an asymptotically vanishing time dependent cosmological ‘constant’. Astron. Astrophys. 1995, 301, 321. [Google Scholar]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 1998, 80, 1582. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Martin, J. Quintessence and supergravity. Phys. Lett. 1999, B468, 40. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.R. A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Rev. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Silva, F.E.; Santos, R.C. Accelerating Cold Dark Matter Cosmology (ΩΛ≡0). Class. Quant. Grav. 2008, 25, 205006. [Google Scholar] [CrossRef] [Green Version]
- Brookfield, A.W.; van de Bruck, C.; Mota, D.F.; Tocchini-Valentini, D. Cosmology with massive neutrinos coupled to dark energy. Phys. Rev. Lett. 2006, 96, 061301. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Tsujikawa, S. Dark Energy Theory and Observations; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177. [Google Scholar] [CrossRef]
- Liddle, A.R. Power Law Inflation With Exponential Potentials. Phys. Lett. B 1989, 220, 502. [Google Scholar] [CrossRef]
- Charters, T.; Mimoso, J.P.; Nunes, A. Slow roll inflation without fine tuning. Phys. Lett. B 2000, 472, 21. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Saich, P. Scalar field cosmologies. Class. Quantum Grav. 1993, 10, 279. [Google Scholar] [CrossRef]
- Chervon, S.V.; Zhuravlev, V.M.; Shchigolev, V.K. New exact solutions in standard inflationary models. Phys. Lett. B 1997, 398, 269. [Google Scholar] [CrossRef] [Green Version]
- Kallosh, R.; Linde, A. Superconformal generalization of the chaotic inflation model λ4ϕ4-ξ2ϕ2R. JCAP 2013, 13, 027. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. New inflationary exact solution from Lie symmetries. Mod. Phys. Lett. A 2022, 37, 2250119. [Google Scholar] [CrossRef]
- de Haro, J.; Amorós, J.; Pan, S. Simple inflationary quintessential model. Phys. Rev. D 2016, 93, 084018. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Guth, A. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D. An attempt to get rid of the Cosmological Constant. In The Very Early Universe; Gibbons, G., Hawking, S.W., Tiklos, S.T., Eds.; Cambridge University Press: Cambridge UK, 1982. [Google Scholar]
- Jassal, H.K.; Bagla, J.S.; Padmanabhan, T. Observational constraints on low redshift evolution of dark energy: How consistent are different observations? Phys. Rev. 2005, D72, 103503. [Google Scholar] [CrossRef] [Green Version]
- Jassal, H.K.; Bagla, J.S.; Padmanabhan, T. Understanding the origin of CMB constraints on dark energy. Mon. Not. R. Astron. Soc. Lett. 2005, 356, L11–L16. [Google Scholar] [CrossRef]
- Samushia, L.; Ratra, B. Cosmological Constraints from Hubble Parameter versus Redshift Data. Astrophys. J. 2006, 650, L5. [Google Scholar] [CrossRef] [Green Version]
- Samushia, L.; Ratra, B. Constraints on Dark Energy from Galaxy Cluster Gas Mass Fraction versus Redshift Data. Astrophys. J. 2008, 680, L1. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Verde, L.; Jiménez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. 2005, D71, 123001. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Paliathanasis, A. Observational Constraints on New Exact Inflationary Scalar-field Solutions. Phys. Rev. D 2016, 94, 083518. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Yang, W.; Paliathanasis, A. Imprints of an extended Chevallier–Polarski–Linder parametrization on the large scale of our universe. EPJC 2020, 80, 274. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. Superquintessence. Int. J. Mod. Phys. D 2002, 11, 471. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Alcaniz, J.S. Thermodynamics and spectral distribution of dark energy. Phys. Lett. B 2004, 600, 191. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.H.; Lima, J.A.S. On Phantom Thermodynamics. Phys. Lett. B 2008, 669, 266. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M.; Basilakos, S. Dynamical symmetries and observational constraints in scalar field cosmology. Phys. Rev. D 2014, 90, 103524. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Brandenberger, R.H. The TransPlanckian problem of inflationary cosmology. Phys. Rev. D 2001, 63, 123501. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer, J.C. Inflation with a Planck scale frequency cutoff. Phys. Rev. D 2001, 63, 123502. [Google Scholar] [CrossRef]
- Kempf, A. Mode generating mechanism in inflation with cutoff. Phys. Rev. D 2001, 63, 083514. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A.; Niemeyer, J. Perturbation spectrum in inflation with cutoff. Phys. Rev. D 2001, 64, 103501. [Google Scholar] [CrossRef] [Green Version]
- Ashoorioon, A.; Kempf, A.; Mann, R.B. Minimum length cutoff in inflation and uniqueness of the action. Phys. Rev. D 2005, 71, 023503. [Google Scholar] [CrossRef] [Green Version]
- Ashoorioon, A.; Hovdebo, J.L.; Mann, R.B. Running of the spectral index and violation of the consistency relation between tensor and scalar spectra from trans-Planckian physics. Nucl. Phys. B 2005, 727, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Zampeli, A.; Paliathanasis, A. Quantization of inhomogeneous spacetimes with cosmological constant term. Class. Quantum Grav. 2021, 38, 165012. [Google Scholar] [CrossRef]
- Paliathanasis, A. Quantum potentiality in Inhomogeneous Cosmology. Universe 2021, 7, 52. [Google Scholar] [CrossRef]
- Zampeli, A.; Pailas, T.; Terzis, P.A.; Christodoulakis, T. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities. JCAP 2016, 05, 066. [Google Scholar] [CrossRef] [Green Version]
- Mukhi, S. String theory: A perspective over the last 25 years. Class. Quant. Grav. 2011, 28, 153001. [Google Scholar] [CrossRef] [Green Version]
- Kowalski-Glikman, J. Introduction to doubly special relativity. Lect. Notes Phys. 2005, 669, 131–159. [Google Scholar]
- Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Issues. Symmetry 2010, 2, 230–271. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and the Second Law. Lett. Nuovo C 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Maggiore, M. A Generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65. [Google Scholar] [CrossRef] [Green Version]
- Giacomini, A.; Leon, G.; Paliathanasis, A.; Pan, S. Dynamics of Quintessence in Generalized Uncertainty Principle. Eur. Phys. J. C 2020, 80, 931. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G.; Khyllep, W.; Dutta, J.; Pan, S. Interacting quintessence in light of generalized uncertainty principle: Cosmological perturbations and dynamics. Eur. Phys. J. C 2021, 81, 607. [Google Scholar] [CrossRef]
- Masood, S.; Faizal, M.; Zal, Z.; Ali, A.F.; Raza, J.; Shah, M.B. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle. Phys. Lett. B 2016, 763, 218. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Ziaie, A.H.; Marto, J.; Moniz, P.V. Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space. Phys. Rev. D 2014, 89, 044028. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Rasouli, S.M.M.; Moniz, P.V. Quantum cosmology, minimal length and holography. Phys. Rev. D 2014, 90, 023541. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Farhoudi, M.; Vargas Moniz, P. Modified Brans–Dicke theory in arbitrary dimensions. Class. Quant. Grav. 2014, 31, 115002. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Vargas Moniz, P. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation. Phys. Rev. D 2014, 90, 083533. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V. Non-singular Brans–Dicke collapse in deformed phase space. Ann. Phys. 2016, 375, 154–178. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Vargas Moniz, P. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting. Odessa Astron. Pub. 2016, 29, 19. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Capistrano, A.J.S.; Moniz, P.V. Quantum deformation of quantum cosmology: A framework to discuss the cosmological constant problem. Phys. Dark Univ. 2017, 18, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Payán, S.; Sabido, M.; Yee-Romero, C. Effects of deformed phase space on scalar field cosmology. Phys. Rev. D 2013, 88, 027503. [Google Scholar] [CrossRef] [Green Version]
- Tajahmad, B. Late-time-accelerated expansion esteemed from minisuperspace deformation. Eur. Phys. J. C 2022, 82, 965. [Google Scholar] [CrossRef]
- Tavakol, R. Introduction to Dynamical Systems; Cambridge University Press: Cambridge, UK, 1997; pp. 84–104. [Google Scholar]
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686–4690. [Google Scholar] [CrossRef]
- Coley, A.A. Dynamical Systems and Cosmology; Kluwer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Leon, G.; Fadragas, C.R. Cosmological Dynamical Systems; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2012; ISBN 978-3-8473-0233-9. [Google Scholar]
- Gong, Y.; Wang, A.; Zhang, Y.-Z. Exact scaling solutions and fixed points for general scalar field. Phys. Lett. B 2006, 636, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Setare, M.R.; Saridakis, E.N. Quintom dark energy models with nearly flat potentials. Phys. Rev. D 2009, 79, 043005. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Gong, Y.-G. Saridakis, E.N. Phase-space analysis of interacting phantom cosmology. JCAP 2009, 04, 001. [Google Scholar]
- Gupta, G.; Saridakis, E.N.; Sen, A.A. Non-minimal quintessence and phantom with nearly flat potentials. Phys. Rev. D 2009, 79, 123013. [Google Scholar] [CrossRef]
- Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A. Stability Analysis in Tachyonic Potential Chameleon cosmology. JCAP 2011, 05, 017. [Google Scholar] [CrossRef]
- Arturo Urena-Lopez, L. Unified description of the dynamics of quintessential scalar fields. JCAP 2012, 03, 035. [Google Scholar] [CrossRef] [Green Version]
- Escobar, D.; Fadragas, C.R.; Leon, G.; Leyva, Y. Phase space analysis of quintessence fields trapped in a Randall-Sundrum Braneworld: A refined study. Class. Quant. Grav. 2012, 29, 175005. [Google Scholar] [CrossRef] [Green Version]
- Escobar, D.; Fadragas, C.R.; Leon, G.; Leyva, Y. Phase space analysis of quintessence fields trapped in a Randall-Sundrum Braneworld: Anisotropic Bianchi I brane with a Positive Dark Radiation term. Class. Quant. Grav. 2012, 29, 175006. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Saridakis, E.N.; Leon, G. Phase-Space analysis of Teleparallel Dark Energy. JCAP 2012, 07, 005. [Google Scholar] [CrossRef]
- Leon, G.; Saavedra, J.; Saridakis, E.N. Cosmological behavior in extended nonlinear massive gravity. Class. Quant. Grav. 2013, 30, 135001. [Google Scholar] [CrossRef] [Green Version]
- Burd, A.B.; Barrow, J.D. Inflationary Models with Exponential Potentials. Nucl. Phys. B 1988, 308, 929–945, Erratum in Nucl.Phys. B 1989, 324, 276. [Google Scholar] [CrossRef]
- de Vegvar, P.G.N. Commutatively deformed general relativity: Foundations, cosmology, and experimental tests. Eur. Phys. J. C 2021, 81, 786. [Google Scholar] [CrossRef]
- Basilakos, S.; Tsamparlis, M.; Paliathanasis, A. Using the Noether symmetry approach to probe the nature of dark energy. Phys. Rev. D 2011, 83, 103512. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M. Two scalar field cosmology: Conservation laws and exact solutions. Phys. Rev. D 2014, 90, 043529. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Leon, G.; Pan, S. Exact Solutions in Chiral Cosmology. Gen. Rel. Grav. 2019, 51, 106. [Google Scholar] [CrossRef]
Label | Existence | Coordinates | Eigenvalues | Stability |
---|---|---|---|---|
Unstable | ||||
always | Stable | |||
Stable | ||||
Stable | ||||
∄ | Stable |
Label | Existence | Coordinates | Eigenvalue | Stability |
---|---|---|---|---|
6 | Unstable | |||
Stable | ||||
Stable |
Label | Existence | Coordinates | Eigenvalue | Stability |
---|---|---|---|---|
6 | Unstable | |||
Stable | ||||
Stable |
Label | Existence | Coordinates | Eigenvalues | Stability |
---|---|---|---|---|
Unstable | ||||
always | Stable | |||
Stable | ||||
Stable | ||||
∄ | Stable | |||
M | Stable for | |||
Unstable for | ||||
Saddle otherwise |
Label | Coordinates | Eigenvalues | Stability |
---|---|---|---|
Unstable | |||
Stable | |||
Stable | |||
Stable | |||
M | Stable for | ||
Unstable for | |||
Saddle otherwise |
Label | Coordinates | Eigenvalues | Stability |
---|---|---|---|
Stable | |||
Stable | |||
Stable | |||
M | Stable for | ||
Unstable for | |||
Saddle otherwise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, G.; Millano, A.D.; Paliathanasis, A. Scalar Field Cosmology from a Modified Poisson Algebra. Mathematics 2023, 11, 120. https://doi.org/10.3390/math11010120
Leon G, Millano AD, Paliathanasis A. Scalar Field Cosmology from a Modified Poisson Algebra. Mathematics. 2023; 11(1):120. https://doi.org/10.3390/math11010120
Chicago/Turabian StyleLeon, Genly, Alfredo D. Millano, and Andronikos Paliathanasis. 2023. "Scalar Field Cosmology from a Modified Poisson Algebra" Mathematics 11, no. 1: 120. https://doi.org/10.3390/math11010120
APA StyleLeon, G., Millano, A. D., & Paliathanasis, A. (2023). Scalar Field Cosmology from a Modified Poisson Algebra. Mathematics, 11(1), 120. https://doi.org/10.3390/math11010120