Next Article in Journal
Investigation of the Convergence of a Multi-Grid Algorithm for Solving the Task of Pressure in the Thin Lubricating Film of the Non-Newtonian Fluid
Next Article in Special Issue
Geometry of Tangent Poisson–Lie Groups
Previous Article in Journal
Rethinking the Teaching of University Statistics: Challenges and Opportunities Learned from the Colombia–UK Dialogue
Previous Article in Special Issue
Locally Homogeneous Manifolds Defined by Lie Algebra of Infinitesimal Affine Transformations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle

by
Mohammad Nazrul Islam Khan
1,*,
Uday Chand De
2 and
Ljubica S. Velimirović
3
1
Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
2
Department of Pure Mathematics, University of Calcutta 35, Ballygaunge Circular Road, Kolkata 700019, India
3
Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, 18 000 Niš, Serbia
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(1), 53; https://doi.org/10.3390/math11010053
Submission received: 29 November 2022 / Revised: 16 December 2022 / Accepted: 19 December 2022 / Published: 23 December 2022
(This article belongs to the Special Issue Geometry of Manifolds and Applications)

Abstract

:
The objective of this paper is to explore the complete lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. A relationship between the Riemannian connection and the quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle was established. Some theorems on the curvature tensor and the projective curvature tensor of a Sasakian manifold with respect to the quarter-symmetric metric connection to its tangent bundle were proved. Finally, locally ϕ -symmetric Sasakian manifolds with respect to the quarter-symmetric metric connection to its tangent bundle were studied.

1. Introduction

The study of the tangent bundle is a powerful method in geometry that allows us to retrieve effective results while studying various connections and geometric structures, such as a quarter-symmetric metric connection, a semi-symmetric connection, an almost complex structure and a contact structure on the manifold M admitting lifts to its tangent bundle T M . Peyghan et al. [1] studied the members of a golden structure on T M with a Riemannian metric and established the integrability condition of such a structure on T M . The complete lifts of connections such as quarter-symmetric metric connection and quarter-symmetric non-metric connection from the manifold M to T M have been studied by Akpinar [2], Altunbas et al. ([3,4]), Kazan and Karadag [5], Khan [6]. For the recent studies on lifts of connections and geometric structures, we refer to ([7,8,9,10,11]) and many more.
The definition and discussion of a quarter-symmetric connection on a Riemannian manifold, on the other hand, were provided by Golab [12].
A linear connection ˜ on a Riemannian manifold M (dim = n ) with a Reimannian metric g is called a quarter-symmetric connection if its torsion tensor T of the connection ˜
T ( ζ 1 , ζ 2 ) = ˜ ζ 1 ζ 2 ˜ ζ 2 ζ 1 [ ζ 1 , ζ 2 ]
satisfies
T ( ζ 1 , ζ 2 ) = η ( ζ 2 ) ϕ ζ 1 η ( ζ 1 ) ϕ ζ 2 ,
where η is a 1-form and ϕ is a tensor field of type (1,1).
In addition, if ˜ fulfills
( ˜ ζ 1 g ) ( ζ 2 , ζ 3 ) = 0 ,
ζ 1 , ζ 2 , ζ 3 0 1 ( M ) , then ˜ is called a quarter-symmetric metric connection; otherwise, it is called a quarter-symmetric non-metric connection ([13,14,15]). The quarter-symmetric metric connections on different manifolds such as Riemannian, Hermitian, Kaehlerian, Kenmotsu and Sasakian manifolds have been studied by Mondol and De [16], Mishra and Pandey [17], Mukhopadhyay et al. [18], Bahadir [19], Sular et al. [20] and many more.
We established certain curvature properties on T M and explored the lifts of a quarter-symmetric metric connection from a Sasakian manifold to T M . The results of this paper are given as:
  • We established a relationship between the Riemannian connection and the quarter-symmetric metric connection from a Sasakian manifold to T M .
  • We derived the expression of the curvature tensor of a Sasakian manifold equipped with a quarter-symmetric metric connection to T M .
  • We studied a ξ -projectively flat Sasakian manifold endowed with a quarter-symmetric metric connection to T M .
  • We locally characterized a ϕ -symmetric Sasakian manifold admitting a quarter-symmetric metric connection to T M .

2. Preliminaries

Let us consider T M to be the tangent bundle of a manifold M. The set of all tensor fields of type ( r , s ) that are of contravariant degree r and covariant degree s in M and T M are denoted by s r ( M ) and s r ( T M ) , respectively. Let the function, a 1-form, a vector field and a tensor field of type (1,1) be symbolized as f , η , ζ 1 and ϕ , respectively. The complete and vertical lifts of f , η , ζ 1 , ϕ are symbolized as f C , η C , ζ 1 C , ϕ C and f V , η V , ζ 1 V , ϕ V , respectively. The following operations on f , η , ζ 1 and ϕ are defined by [21,22]
( f ζ 1 ) V = f V ζ 1 V , ( f ζ 1 ) C = f C ζ 1 V + f V ζ 1 C ,
ζ 1 V f V = 0 , ζ 1 V f C = ζ 1 C f V = ( ζ 1 f ) V , ζ 1 C f C = ( ζ 1 f ) C ,
η V ( f V ) = 0 , η V ( ζ 1 C ) = η C ( ζ 1 V ) = η ( ζ 1 ) V , η C ( ζ 1 C ) = η ( ζ 1 ) C ,
ϕ V ζ 1 C = ( ϕ ζ 1 ) V , ϕ C ζ 1 C = ( ϕ ζ 1 ) C ,
[ ζ 1 , ζ 2 ] V = [ ζ 1 C , ζ 2 V ] = [ ζ 1 V , ζ 2 C ] , [ ζ 1 , ζ 2 ] C = [ ζ 1 C , ζ 2 C ] .
ζ 1 C C ζ 2 C = ( ζ 1 ζ 2 ) C , ζ 1 C C ζ 2 V = ( ζ 1 ζ 2 ) V ,
where ∇ is the Levi–Civita connection.
Let M be a contact metric manifold of dimension n with a contact metric structure ( ϕ , ξ , η , g ) fulfilling the conditions [23]
η ( ζ 1 ) = g ( ζ 1 , ξ ) , ϕ 2 = ζ 1 + η ( ζ 1 ) ξ ,
ϕ ξ = 0 , η ( ξ ) = 1 , η · ϕ = 0 ,
g ( ϕ ζ 1 , ϕ ζ 2 ) = g ( ζ 1 , ζ 2 ) η ( ζ 1 ) η ( ζ 2 ) ,
where ϕ is a (1,1) tensor, ξ is a vector field, called the characteristic vector field, and η is a 1-form. If M satisfies
( ζ 1 ϕ ) ζ 2 = g ( ζ 1 , ζ 2 ) ξ η ( ζ 2 ) ζ 1 ,
then M is named a Sasakian manifold. In addition, the following properties hold on a Sasakian manifold M:
ζ 1 ξ = ϕ ζ 1 ,
( ζ 1 η ) ζ 2 = g ( ζ 1 , ϕ ζ 2 ) ,
R ( ζ 1 , ζ 2 ) ξ = η ( ζ 2 ) ζ 1 η ( ζ 1 ) ζ 2 ,
R ( ξ , ζ 1 ) ζ 2 = ( ζ 1 ϕ ) ζ 2 ) ,
S ( ζ 1 , ξ ) = ( n 1 ) η ( ζ 1 ) ,
S ( ϕ ζ 1 , ϕ ζ 2 ) = S ( ζ 1 , ζ 2 ) ( n 1 ) η ( ζ 1 ) η ( ζ 2 ) ,
where ζ 1 , ζ 2 0 1 ( M ) , R and S indicate the curvature tensor and the Ricci tensor, respectively.

3. Complete Lifts from a Sasakian Manifold to Its Tangent Bundle

Let us consider T M to be the tangent bundle of a Sasakian manifold M. Taking complete lifts on both sides of Equations (1), (2) and (10)–(32), we infer that
T C ( ζ 1 C , ζ 2 C ) = ˜ ζ 1 C C ζ 2 C ˜ ζ 2 C C ζ 1 C [ ζ 1 C , ζ 2 C ] , T C ( ζ 1 C , ζ 2 C ) = π C ( ζ 2 C ) ( ϕ ζ 1 ) V + π V ( ζ 2 C ) ( ϕ ζ 1 ) C
π C ( ζ 1 C ) ( ϕ ζ 2 ) V π V ( ζ 1 C ) ( ϕ ζ 2 ) C ,
π C ( ζ 1 C ) = g C ( ξ C , ζ 1 C ) , ( d η ( ζ 1 , ζ 2 ) C = g C ( ( ϕ ζ 1 ) C , ζ 2 C ) , η C ( ζ 1 C ) = g C ( ζ 1 C , ξ C )
( ϕ 2 ) C ζ 1 = ζ 1 C + η C ( ζ 1 C ) ξ V + η V ( ζ 1 C ) ξ C , ϕ C ξ V = ϕ V ξ C = ϕ V ξ V = ϕ C ξ C = 0 , η C ξ C = η V ξ V = 0 , η C ξ V = η V ξ C = 1
η V ϕ C = η C ϕ V = η C ϕ C = η V ϕ V = 0 ,
g ( ( ϕ ζ 1 ) C , ( ϕ ζ 2 ) C ) = g C ( ζ 1 C , ζ 2 C ) η C ( ζ 1 C ) η V ( ζ 2 C )
η V ( ζ 1 C ) η C ( ζ 2 C ) , ( ζ 1 C C ϕ C ) ζ 2 C = g C ( ζ 1 C , ζ 2 C ) ξ V + g C ( ζ 1 V , ζ 2 C ) ξ C
η C ( ζ 2 C ) ζ 1 V η V ( ζ 2 C ) ζ 1 C ,
ζ 1 C C ξ C = ( ϕ ζ 1 ) C ,
( ζ 1 C C η C ) ζ 2 C = g C ( ζ 1 C , ( ϕ ζ 2 ) C ) , R C ( ζ 1 C , ζ 2 C ) ξ C = η C ( ζ 2 C ) ζ 1 V + η V ( ζ 2 C ) ζ 1 C η C ( ζ 1 C ) ζ 2 V
η V ( ζ 1 C ) ζ 2 C ,
R C ( ξ C , ζ 1 C ) ζ 2 C = ( ζ 1 C C ϕ C ) ζ 2 C ,
S C ( ζ 1 C , ξ C ) = ( n 1 ) η C ( ζ 1 C ) , S C ( ( ϕ ζ 1 ) C , ( ϕ ζ 2 ) C ) = S C ( ζ 1 C , ζ 2 C ) ( n 1 ) { η C ( ζ 1 C ) η V ( ζ 2 C )
+ η V ( ζ 1 C ) η C ( ζ 2 C ) } ,
where ζ 1 C , ζ 2 C , ξ C 0 1 ( T M ) , ϕ C 1 1 ( T M ) .

4. Relation between the Riemannian Connection and the Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle

Assuming that M is an almost contact metric manifold, let ˜ be a linear connection and ∇ be a Riemannian connection. Then,
˜ X Y = X Y + U ( ζ 1 , ζ 2 ) ,
where ζ 1 , ζ 2 0 1 ( M ) , U 2 1 ( M ) . Let ˜ be a quarter-symmetric metric connection in M. Then [12],
U ( ζ 1 , ζ 2 ) = 1 2 [ T ( ζ 1 , ζ 2 ) + T ( ζ 1 , ζ 2 ) + T ( ζ 2 , ζ 1 ) ,
where T is a (1,2) tensor; that is, T 2 1 ( M ) such that
g ( T ( ζ 1 , ζ 2 ) , ζ 3 ) = g ( T ( ζ 3 , ζ 1 ) , ζ 2 ) .
Taking complete lifts on both sides of Equations (34)–(36), we infer that
˜ ζ 1 C C ζ 2 C = ζ 1 C C ζ 2 C + U C ( ζ 1 C , ζ 2 C ) , U C ( ζ 1 C , ζ 2 C ) = 1 2 [ T C ( ζ 1 C , ζ 2 C ) + T C ( ζ 1 C , ζ 2 C )
+ T C ( ζ 2 C , ζ 1 C ) ] ,
g C ( T C ( ζ 1 C , ζ 2 C ) , ζ 3 C ) = g C ( T C ( ζ 3 C , ζ 1 C ) , ζ 2 C ) ,
where U C , C , T C and T C are complete lifts of U , , T and T , respectively.
From (21) and (38), we infer that
T C ( ζ 1 C , ζ 2 C ) = g C ( ( ϕ ζ 2 ) C , ζ 1 C ) ξ V + g C ( ( ϕ ζ 2 ) V , ζ 1 C ) ξ C η C ( ζ 1 C ) ( ϕ ζ 2 ) V η V ( ζ 1 C ) ( ϕ ζ 2 ) C .
Using (21) and (39) in (37), we provide
U C ( ζ 1 C , ζ 2 C ) = η C ( ζ 1 C ) ( ϕ ζ 2 ) V η V ( ζ 1 C ) ( ϕ ζ 2 ) C .
Hence, a quarter-symmetric metric connection ˜ C on a Sasakian manifold on T M is defined by
˜ ζ 1 C C ζ 2 C = ζ 1 C C ζ 2 C η C ( ζ 1 C ) ( ϕ ζ 2 ) V η V ( ζ 1 C ) ( ϕ ζ 2 ) C .
In contrast, we demonstrate that a linear connection ˜ on a Sasakian manifold defined by
˜ ζ 1 C C ζ 2 C = ζ 1 C C ζ 2 C η C ( ζ 1 C ) ( ϕ ζ 2 ) V η V ( ζ 1 C ) ( ϕ ζ 2 ) C .
denotes a quarter-symmetric metric connection on T M .
In view of (41), the torsion tensor of the connection ˜ C on T M is defined by
T C ( ζ 1 C , ζ 2 C ) = η C ( ζ 2 C ) ( ϕ ζ 1 ) V + η V ( ζ 2 C ) ( ϕ ζ 1 ) C η C ( ζ 1 C ) ( ϕ ζ 2 ) V η V ( ζ 1 C ) ( ϕ ζ 2 ) C .
The Equation (42) implies that ˜ C is a quarter-symmetric connection on T M . Further, we infer that
( ˜ ζ 1 C C g C ) ( ζ 2 C , ζ 3 C ) = ζ 1 C g C ( ζ 2 V , ζ 3 C ) + ζ 1 V g C ( ζ 2 C , ζ 3 C ) g C ( ˜ ζ 1 C C ζ 2 C , ζ 3 C ) .
In view of (42) and (43), ˜ C is a quarter-symmetric metric connection on T M . The relationship between the Riemannian connection and the quarter-symmetric metric connection on a Sasakian manifold on T M is given by (41).

5. Expression of the Curvature Tensor of a Sasakian Manifold to Its Tangent Bundle

The two curvature tensors R and R ˜ corresponding to the connections ˜ and ∇, respectively, are related by the formula [24]
R ˜ ( ζ 1 , ζ 2 ) ζ 3 = R ( ζ 1 , ζ 2 ) ζ 3 2 d η ( ζ 1 , ζ 2 ) ϕ ζ 3 + η ( ζ 1 ) g ( ζ 2 , ζ 3 ) ξ η ( ζ 2 ) g ( ζ 1 , ζ 3 ) ξ + { η ( ζ 2 ) ζ 1 η ( ζ 1 ) ζ 2 } η ( ζ 3 ) ,
where R ( ζ 1 , ζ 2 ) ζ 3 indicates the Riemannian curvature of M.
Taking complete lifts on both sides of (44), we infer that
R ˜ C ( ζ 1 C , ζ 2 C ) ζ 3 C = R C ( ζ 1 C , ζ 2 C ) ζ 3 C 2 d η C ( ζ 1 C , ζ 2 C ) ( ϕ ζ 3 ) V 2 d η V ( ζ 1 C , ζ 2 C ) ( ϕ ζ 3 ) C + η C ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ V + η C ( ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ξ C + η V ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ C η C ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ V η C ( ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ξ C η V ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ C + η C ( ζ 2 C ) η C ( ζ 3 C ) ζ 1 V + η C ( ζ 2 C ) η V ( ζ 3 C ) ζ 1 C + η V ( ζ 2 C ) η C ( ζ 3 C ) ζ 1 C { η C ( ζ 1 C ) η C ( ζ 3 C ) ζ 2 V + η C ( ζ 1 C ) η V ( ζ 3 C ) ζ 2 C + η V ( ζ 1 C ) η C ( ζ 3 C ) ζ 2 C } ,
where R C ( ζ 1 C , ζ 2 C ) ζ 3 C is the complete lift of R ( ζ 1 , ζ 2 ) ζ 3 .
On contracting (45), we infer that
S ˜ C ( ζ 2 C , ζ 3 C ) = S C ( ζ 2 C , ζ 3 C ) 2 d η C ( ( ϕ ζ 3 ) C , ζ 2 C ) + g C ( ζ 2 C , ζ 3 C ) + ( n 2 ) { η C ( ζ 2 C ) η V ( ζ 3 C ) + η V ( ζ 2 C ) η C ( ζ 3 C ) } ,
where S ˜ C and S C are the complete lifts of the Ricci tensors S ˜ and S of the connections ˜ and ∇, respectively. From (46), we infer that the Ricci tensor with regard to ˜ C on a Sasakian manifold on T M is symmetric.
Again contracting (46), we infer that
r ˜ C = r C + 2 ( n 1 ) ,
where r ˜ C and r C on T M are the complete lifts of the scalar curvatures r ˜ and r of the connections ˜ and ∇, respectively.

6. Expression of the Projective Curvature Tensor of a Sasakian Manifold to Its Tangent Bundle

The projective curvature tensor of a Sasakian manifold with regard to ˜ is given by [17]
P ˜ ( ζ 1 , ζ 2 ) ζ 3 = R ˜ ( ζ 1 , ζ 2 ) ζ 3 + 1 n + 1 [ S ˜ ( ζ 1 , ζ 2 ) ζ 3 S ˜ ( ζ 2 , ζ 1 ) ζ 3 ] + 1 n 2 1 [ { n S ˜ ( ζ 1 , ζ 3 ) + S ˜ ( ζ 3 , ζ 1 ) } ζ 2 { n S ˜ ( ζ 2 , ζ 3 ) + S ˜ ( ζ 3 , ζ 2 ) } ζ 1 ] .
Due to the symmetric property of the Ricci tensor S ˜ of M with regard to ˜ , the projective curvature tensor P ˜ becomes
P ˜ ( ζ 1 , ζ 2 ) ζ 3 = R ˜ ( ζ 1 , ζ 2 ) ζ 3 + 1 n + 1 [ S ˜ ( ζ 1 , ζ 2 ) ζ 3 S ˜ ( ζ 2 , ζ 1 ) ζ 3 ] .
Taking complete lifts on both sides of (48), we acquire
P ˜ C ( ζ 1 C , ζ 2 C ) ζ 3 C = R ˜ C ( ζ 1 C , ζ 2 C ) ζ 3 C + 1 n + 1 [ S ˜ C ( ζ 1 C , ζ 2 C ) ζ 3 V + S ˜ V ( ζ 1 C , ζ 2 C ) ζ 3 C S ˜ C ( ζ 2 C , ζ 1 C ) ζ 3 V S ˜ V ( ζ 2 C , ζ 1 C ) ζ 3 C ] .
Using (45) and (46), (49) reduces to
P ˜ C ( ζ 1 C , ζ 2 C ) ζ 3 C = P C ( ζ 1 C , ζ 2 C ) ζ 3 C 2 d η C ( ζ 1 C , ζ 2 C ) ( ϕ ζ 3 ) V 2 d η V ( ζ 1 C , ζ 2 C ) ( ϕ ζ 3 ) C + η C ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ V + η C ( ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ξ C + η V ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ C η C ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ V η C ( ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ξ C η V ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ C + 2 n 1 [ d η C ( ( ϕ ζ 3 ) C , ζ 2 C ) ζ 1 V + d η V ( ( ϕ ζ 3 ) C , ζ 2 C ) ζ 1 C ] d η C ( ( ϕ ζ 3 ) C , ζ 1 C ) ζ 2 V + d η V ( ( ϕ ζ 3 ) C , ζ 1 C ) ζ 2 C + 1 n 1 { η C ( ζ 2 C ) η C ( ζ 3 C ) ζ 1 V + η C ( ζ 2 C ) η V ( ζ 3 C ) ζ 1 C + η V ( ζ 2 C ) η C ( ζ 3 C ) ζ 1 C η C ( ζ 1 C ) η C ( ζ 3 C ) ζ 2 V η C ( ζ 1 C ) η V ( ζ 3 C ) ζ 2 C η V ( ζ 1 C ) η C ( ζ 3 C ) ζ 2 C g C ( ζ 2 C , ζ 3 C ) ζ 1 V g C ( ζ 2 V , ζ 3 C ) ζ 1 C + g C ( ζ 1 C , ζ 3 C ) ζ 2 V + g C ( ζ 1 V , ζ 3 C ) ζ 2 C } ,
where P C is the complete lift of the projective curvature tensor P defined by
P ( ζ 1 , ζ 2 ) ζ 3 = R ( ζ 1 , ζ 2 ) ζ 3 1 n 1 { S ( ζ 2 , ζ 3 ) ζ 1 S ( ζ 1 , ζ 3 ) ζ 2 } .
Mondol and De [16] defined that “A Sasakian manifold M is called ξ -projectively flat if the condition P ( ζ 1 , ζ 2 ) ξ = 0 holds on M”.
According to the above definition, from (50), we acquire P ˜ ( ζ 1 , ζ 2 ) ξ = P ( ζ 1 , ζ 2 ) ξ .
Hence, we conclude the following:
Theorem 1. 
Let T M be the tangent bundle of a Sasakian manifold M with the Riemannian connection . The Riemannian connection C on T M is ξ C -projectively flat if and only if ˜ C is so.
Özgür [25] defined that “a Sasakian manifold fulfilling
ϕ 2 P ( ϕ ζ 1 , ϕ ζ 2 ) ϕ ζ 3 = 0
is called ϕ -projectively flat”.
In the case of the quarter-symmetric metric connection ˜ , we see that ϕ 2 P ˜ ( ϕ ζ 1 , ϕ ζ 2 ) ϕ ζ 3 = 0 remain invariant if and only if
g ( P ˜ ( ϕ ζ 1 , ϕ ζ 2 ) ϕ ζ 3 , ϕ ζ 4 ) = 0 ,
for ζ 1 , ζ 2 , ζ 3 , ζ 4 0 1 ( M ) .
In view of (49) and (53), ϕ -projectively flat means
g C ( R ˜ C ( ( ϕ ζ 1 ) C , ( ϕ ζ 2 ) C ) ( ϕ ζ 3 ) C , ( ϕ ζ 4 ) C ) = 1 n 1 { S ˜ C ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) g V ( ( ϕ ζ 1 ) C , ( ϕ ζ 4 ) C ) + S ˜ V ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) g C ( ( ϕ ζ 1 ) C , ( ϕ ζ 4 ) C ) S ˜ C ( ( ϕ ζ 1 ) C , ( ϕ ζ 3 ) C ) g V ( ( ϕ ζ 2 ) C , ( ϕ ζ 4 ) C ) S ˜ V ( ( ϕ ζ 1 ) C , ( ϕ ζ 3 ) C ) g C ( ( ϕ ζ 2 ) C , ( ϕ ζ 4 ) C ) } .
If ( e 1 C , e 2 C , , e n 1 C , ξ C ) T M , then
( ( ϕ e 1 ) C , ( ϕ e 2 ) C , , ( ϕ e n 1 ) C , ξ C ) T M .
Substituting ζ 1 = ζ 4 = e i into (54) and summing up with regard to i = 1 , 2 , , n 1 , we acquire
g C ( R ˜ C ( ( ϕ e i ) C , ( ϕ ζ 2 ) C ) ( ϕ ζ 3 ) C , ( ϕ e i ) C ) = 1 n 1 { S ˜ C ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) g V ( ( ϕ e i ) C , ( ϕ e i ) C ) + S ˜ V ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) g C ( ( ϕ e i ) C , ( ϕ e i ) C ) S ˜ C ( ( ϕ e i ) C , ( ϕ ζ 3 ) C ) g V ( ( ϕ ζ 2 ) C , ( ϕ e i ) C ) S ˜ V ( ( ϕ e i ) C , ( ϕ ζ 3 ) C ) g C ( ( ϕ ζ 2 ) C , ( ϕ e i ) C ) } .
Using (23), (24), (28) and (46), the following equations are obtained:
g C ( R ˜ C ( ( ϕ e i ) C , ( ϕ ζ 2 ) C ) ( ϕ ζ 3 ) C , ( ϕ e i ) C ) = g C ( R ˜ C ( ( ϕ e i ) C , ( ϕ ζ 2 ) C ) ( ϕ ζ 3 ) C , ( ϕ e i ) C ) 2 g C ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) = S C ( ζ 2 C , ζ 3 C ) R C ( ξ C , ζ 2 C , ζ 3 C , ξ C ) ( n 1 ) { η C ( ζ 2 C ) η V ( ζ 3 C ) + η V ( ζ 2 C ) η C ( ζ 3 C ) } 2 g C ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) = S ˜ C ( ζ 2 C , ζ 3 C ) 6 g C ( ζ 2 C , ζ 3 C )
2 ( n 4 ) { η C ( ζ 2 C ) η V ( ζ 3 C ) + η V ( ζ 2 C ) η C ( ζ 3 C ) } ,
i = 1 n 1 g C ( ( ϕ e i ) C , ( ϕ e i ) C ) = n 1 ,
i = 1 n 1 ( S ˜ ( ϕ e i , ϕ ζ 3 ) g ( ϕ ζ 2 , ϕ e i ) ) C = S ˜ C ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) .
In view of (56), (58) and (59), Equation (55) becomes
S ˜ C ( ζ 2 C , ζ 3 C ) 6 g C ( ζ 2 C , ζ 3 C ) 2 ( n 4 ) { η C ( ζ 2 C ) η V ( ζ 3 C ) + η V ( ζ 2 C ) η C ( ζ 3 C ) } = n 2 n 1 S ˜ C ( ( ϕ ζ 2 ) C , ( ϕ ζ 3 ) C ) .
In view of (31) and (46), (60) becomes
S ˜ C ( ζ 2 C , ζ 3 C ) = 6 g C ( ζ 2 C , ζ 3 C ) 4 ( n 1 ) { η C ( ζ 2 C ) η V ( ζ 3 C ) + η V ( ζ 2 C ) η C ( ζ 3 C ) } .
Hence, we conclude the following:
Theorem 2. 
Let T M be the tangent bundle of a Sasakian manifold M with regard to ˜ . If a Sasakian manifold M on T M is ϕ C -projectively flat with regard to ˜ C , then the manifold is an η C -Einstein manifold with regard to ˜ C on T M .

7. Locally ϕ -Symmetric Sasakian Manifold with regard to the Quarter-Symmetric Metric Connection to its Tangent Bundle

Takahashi [26] defined that “A Sasakian manifold is said to be locally ϕ -symmetric if
ϕ 2 ( ζ 4 R ) ( ζ 1 , ζ 2 ) ζ 3 = 0 ,
for all vector fields ζ 4 , ζ 1 , ζ 2 , ζ 3 orthogonal to ξ , where ξ is the characteristic vector field of the Sasakian manifold M.” Further, Mondal and De [16] defined locally ϕ -symmetric Sasakian manifold with regard to ˜ as
ϕ 2 ( ˜ ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 = 0 ,
where ζ 4 , ζ 1 , ζ 2 , ζ 3 are orthogonal to ξ . In view of (40), we infer that
( ( ˜ ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C = ( ( ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C η C ( ζ 4 C ) ( ϕ R ˜ ( ζ 1 , ζ 2 ) ζ 3 ) V η V ( ζ 4 C ) ( ϕ R ˜ ( ζ 1 , ζ 2 ) ζ 3 ) C .
Now, differentiating (44) with regard to ζ 4 , we infer that
( ( ˜ ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C = ( ( ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C 2 d η C ( ζ 1 C , ζ 2 C ) ( ( ζ 4 ϕ ) ζ 3 ) V 2 d η V ( ζ 1 C , ζ 2 C ) ( ( ζ 4 ϕ ) ζ 3 ) C + ( ζ 4 η ) C ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ V + ( ζ 4 η ) C ( ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ξ C + ( ζ 4 η ) V ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ C ( ζ 4 η ) C ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ V ( ζ 4 η ) C ( ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ξ C ( ζ 4 η ) V ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ C η C ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ( ζ 4 ξ ) V η C ( ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ( ζ 4 ξ ) C η V ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ( ζ 4 ξ ) C η C ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ( ζ 4 ξ ) V η C ( ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ( ζ 4 ξ ) C η V ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ( ζ 4 ξ ) C + ( ζ 4 η ) C ( ζ 2 C ) η C ( ζ 3 C ) ζ 1 V + ( ζ 4 η ) C ( ζ 2 C ) η V ( ζ 3 C ) ζ 1 V + ( ζ 4 η ) V ( ζ 2 C ) η C ( ζ 3 C ) ζ 1 C + ( ζ 4 η ) C ( ζ 3 C ) η C ( ζ 2 C ) ζ 1 V + ( ζ 4 η ) C ( ζ 3 C ) η V ( ζ 2 C ) ζ 1 V + ( ζ 4 η ) V ( ζ 3 C ) η C ( ζ 2 C ) ζ 1 C ( ζ 4 η ) C ( ζ 1 C ) η C ( ζ 3 C ) ζ 2 V ( ζ 4 η ) C ( ζ 1 C ) η V ( ζ 3 C ) ζ 2 V ( ζ 4 η ) V ( ζ 1 C ) η C ( ζ 3 C ) ζ 2 C ( ζ 4 η ) C ( ζ 3 C ) η C ( ζ 1 C ) ζ 2 V + ( ζ 4 η ) C ( ζ 3 C ) η V ( ζ 1 C ) ζ 2 V + ( ζ 4 η ) V ( ζ 3 C ) η C ( ζ 1 C ) ζ 2 C .
Using (25), (26) and (27), we infer that
( ( ˜ ζ 4 C C R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C = ( ( ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C 2 d η C ( ζ 1 C , ζ 2 C ) g C ( ζ 3 C , ζ 4 C ) ξ V 2 d η C ( ζ 1 C , ζ 2 C ) g C ( ζ 3 V , ζ 4 C ) ξ C 2 d η C ( ζ 1 C , ζ 2 C ) g C ( ζ 3 C , ζ 4 C ) ξ C + 4 d η C ( ζ 1 C , ζ 2 C ) g C ( ( ϕ ζ 1 ) C , ζ 2 C ) η C ( ζ 3 C ) ζ 4 V + 4 d η C ( ζ 1 C , ζ 2 C ) g C ( ( ϕ ζ 1 ) C , ζ 2 C ) η V ( ζ 3 C ) ζ 4 C + 4 d η C ( ζ 1 C , ζ 2 C ) g C ( ( ϕ ζ 1 ) V , ζ 2 C ) η C ( ζ 3 C ) ζ 4 C + 4 d η V ( ζ 1 C , ζ 2 C ) g C ( ( ϕ ζ 1 ) C , ζ 2 C ) η C ( ζ 3 C ) ζ 4 C + g C ( ( ϕ ζ 4 ) C , ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ V
+ g C ( ( ϕ ζ 4 ) C , ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ξ C + g C ( ( ϕ ζ 4 ) V , ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ξ C g C ( ( ϕ ζ 4 ) C , ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ V g C ( ( ϕ ζ 4 ) C , ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ξ C g C ( ( ϕ ζ 4 ) V , ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ξ C + η C ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ( ϕ ζ 4 ) V + η C ( ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ( ϕ ζ 4 ) C + η V ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ( ϕ ζ 4 ) C η C ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ( ϕ ζ 4 ) V η C ( ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ( ϕ ζ 4 ) C η V ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ( ϕ ζ 4 ) C g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η C ( ζ 3 C ) ζ 1 V g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η V ( ζ 3 C ) ζ 1 C g C ( ( ϕ ζ 4 ) V , ζ 2 C ) η C ( ζ 3 C ) ζ 1 C g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η C ( ζ 2 C ) ζ 1 V g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η V ( ζ 2 C ) ζ 1 C g C ( ( ϕ ζ 4 ) V , ζ 3 C ) η C ( ζ 1 C ) ζ 1 C + g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η C ( ζ 3 C ) ζ 2 V + g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η V ( ζ 3 C ) ζ 2 C + g C ( ( ϕ ζ 4 ) V , ζ 1 C ) η C ( ζ 3 C ) ζ 2 C + g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η C ( ζ 1 C ) ζ 2 V + g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η V ( ζ 1 C ) ζ 2 C + g C ( ( ϕ ζ 4 ) V , ζ 3 C ) η C ( ζ 1 C ) ζ 2 C .
Using (66) and (24) in (64), we infer that
( ϕ 2 ( ˜ ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C = ( ϕ 2 ( W R ) ( ζ 1 , ζ 2 ) ζ 3 ) C 2 d η C ( ζ 1 C , ζ 2 C ) η C ( ζ 3 C ) ζ 4 V 2 d η C ( ζ 1 C , ζ 2 C ) η V ( ζ 3 C ) ζ 4 2 d η V ( ζ 1 C , ζ 2 C ) η C ( ζ 3 C ) ζ 4 C + 2 d η C ( ζ 1 C , ζ 2 C ) η C ( ζ 3 C ) η C ( ζ 4 C ) ξ V + 2 d η C ( ζ 1 C , ζ 2 C ) η C ( ζ 3 C ) η V ( ζ 4 C ) ξ C + 2 d η C ( ζ 1 C , ζ 2 C ) η V ( ζ 3 C ) η C ( ζ 4 C ) ξ C + 2 d η V ( ζ 1 C , ζ 2 C ) η C ( ζ 3 C ) η C ( ζ 4 C ) ξ C η C ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ( ϕ ζ 4 ) V η C ( ζ 2 C ) g C ( ζ 1 V , ζ 3 C ) ( ϕ ζ 4 ) C η V ( ζ 2 C ) g C ( ζ 1 C , ζ 3 C ) ( ϕ ζ 4 ) C + η C ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ( ϕ ζ 4 ) V + η C ( ζ 1 C ) g C ( ζ 2 V , ζ 3 C ) ( ϕ ζ 4 ) C + η V ( ζ 1 C ) g C ( ζ 2 C , ζ 3 C ) ( ϕ ζ 4 ) C + g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η C ( ζ 3 C ) ζ 1 V + g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η V ( ζ 3 C ) ζ 1 C + g C ( ( ϕ ζ 4 ) V , ζ 2 C ) η C ( ζ 3 C ) ζ 1 C g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η C ( ζ 3 C ) η C ( ζ 1 C ) ξ V g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η C ( ζ 3 C ) η V ( ζ 1 C ) ξ C g C ( ( ϕ ζ 4 ) C , ζ 2 C ) η V ( ζ 3 C ) η C ( ζ 1 C ) ξ C g C ( ( ϕ ζ 4 ) V , ζ 2 C ) η C ( ζ 3 C ) η C ( ζ 1 C ) ξ C + g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η C ( ζ 2 C ) ζ 1 V + g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η V ( ζ 2 C ) ζ 1 C + g C ( ( ϕ ζ 4 ) V , ζ 3 C ) η C ( ζ 2 C ) ζ 1 C g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η C ( ζ 3 C ) ζ 2 V g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η V ( ζ 3 C ) ζ 2 C g C ( ( ϕ ζ 4 ) V , ζ 1 C ) η C ( ζ 3 C ) ζ 2 C + g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η C ( ζ 3 C ) η C ( ζ 2 C ) ξ V + g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η C ( ζ 3 C ) η V ( ζ 2 C ) ξ C + g C ( ( ϕ ζ 4 ) C , ζ 1 C ) η V ( ζ 3 C ) η C ( ζ 2 C ) ξ C + g C ( ( ϕ ζ 4 ) V , ζ 1 C ) η C ( ζ 3 C ) η C ( ζ 2 C ) ξ C g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η C ( ζ 1 C ) ζ 2 V g C ( ( ϕ ζ 4 ) C , ζ 3 C ) η V ( ζ 1 C ) ζ 2 C g C ( ( ϕ ζ 4 ) V , ζ 3 C ) η C ( ζ 1 C ) ζ 2 C η C ( ζ 4 C ) ( ϕ 2 ( ϕ R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) V η V ( ζ 4 C ) ( ϕ 2 ( ϕ R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C .
If we take ζ 4 , ζ 1 , ζ 2 , ζ 3 orthogonal to ξ , (67) reduces to
( ϕ 2 ( ˜ ζ 4 R ˜ ) ( ζ 1 , ζ 2 ) ζ 3 ) C = ( ϕ 2 ( W R ) ( ζ 1 , ζ 2 ) ζ 3 ) C .
Hence, the following theorem can be stated as:
Theorem 3. 
Let T M be the tangent bundle of a Sasakian manifold M. Then, C is locally ϕ C -symmetric on T M if and only if ˜ C on T M is so.

8. Example

Let us consider a three-dimensional differentiable manifold M = { ( u , v , w ) : u , v , w 3 , z 0 } , where is a set of real numbers and T M its tangent bundle. Let e 1 , e 2 , e 3 be linearly independent vector fields on M given by
e 1 = u u , e 2 = u v , e 3 = u w .
Let g be the Riemannian metric and η be a 1-form on M given by
g ( e 1 , e 2 ) = g ( e 1 , e 3 ) = g ( e 2 , e 3 ) = 0 , g ( e 1 , e 1 ) = g ( e 2 , e 2 ) = g ( e 3 , e 3 ) = 1
and
η ( ζ 3 ) = g ( ζ 3 , e 1 ) , ζ 3 0 1 ( M ) .
Let ϕ be the (1,1) tensor field defined by ϕ e 1 = 0 , ϕ e 2 = e 2 , ϕ e 3 = e 3 . Using the linearity of ϕ and g, we acquire η ( e 1 ) = 1 , ϕ 2 ζ 3 = ζ 3 + η ( ζ 3 ) e 1 and g ( ϕ ζ 1 , ϕ ζ 2 ) = g ( ζ 1 , ζ 2 ) η ( ζ 1 ) η ( ζ 2 ) .
Thus, for e 1 = ξ , the ( ϕ , ξ , η , g ) is a contact metric structure on M and M is called a contact metric manifold. In addition, M satisfies
( ζ 1 ϕ ) ζ 2 = g ( ζ 1 , ζ 2 ) e 1 η ( ζ 2 ) ζ 1 .
Hence, for e 1 = ξ , M is a Sasakian manifold.
Let e 1 C , e 2 C , e 3 C and e 1 V , e 2 V , e 3 V be the complete and vertical lifts on T M of e 1 , e 2 , e 3 on M. Let g C be the complete lift of a Riemannian metric g on T M such that
g C ( ζ 1 V , e 1 C ) = ( g C ( ζ 1 , e 1 ) ) V = ( η ( ζ 1 ) ) V ,
g C ( ζ 1 C , e 1 C ) = ( g C ( ζ 1 , e 1 ) ) C = ( η ( ζ 1 ) ) C , g C ( e 1 C , e 1 C ) = 1 , g V ( ζ 1 V , e 1 C ) = 0 , g V ( e 1 V , e 1 V ) = 0
and so on. Let ϕ C and ϕ V be the complete and vertical lifts of the (1,1) tensor field ϕ defined by
ϕ V ( e 1 V ) = ϕ C ( e 1 C ) = 0 ,
ϕ V ( e 2 V ) = e 2 V , ϕ C ( e 2 C ) = e 2 C ,
ϕ V ( e 3 V ) = e 3 V , ϕ C ( e 3 C ) = e 3 C .
By using the linearity of ϕ and g, we infer that
( ϕ 2 ζ 1 ) C = ζ 1 C + η V ( ζ 1 ) e 1 C + η C ( ζ 1 ) e 1 V ,
g C ( ( ϕ e 1 ) C , ( ϕ e 2 ) C ) = g C ( e 1 C , e 2 C ) ( η ( e 1 ) ) C ( η ( e 2 ) ) V ( η ( e 1 ) ) V ( η ( e 2 ) ) C .
Thus, for e 1 = ξ in (68)–(70), the structure ( ϕ C , ξ C , η C , g C ) is a contact metric structure on T M and satisfies the relation
( e 1 C C ϕ C ) e 2 C = g C ( e 1 C , e 2 C ) ξ V + g C ( e 1 V , e 2 C ) ξ C η C ( e 2 C ) e 1 V e V ( e 2 C ) e 1 C ,
Then, ( ϕ C , ξ C , η C , g C , T M ) is a Sasakian manifold.

Author Contributions

Conceptualization, M.N.I.K., U.C.D.; funding acquisition, M.N.I.K.; investigation, M.N.I.K., L.S.V.; methodology, U.C.D., L.S.V.; project administration, U.C.D.; writing—original draft, M.N.I.K., U.C.D., L.S.V.; writing—review editing, M.N.I.K., U.C.D., L.S.V. All authors have read and agreed to the published version of the manuscript.

Funding

The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

Data Availability Statement

Not Applicable.

Acknowledgments

The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project. The authors would like to thank the reviewers and the editor for reviewing the paper carefully and for their valuable comments to improve the overall quality of the paper.

Conflicts of Interest

The authors declare no conflict of interest in this paper.

References

  1. Peyghan, E.; Firuzi, F.; De, U.C. Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat 2019, 33, 2543–2554. [Google Scholar] [CrossRef]
  2. Akpinar, R.C. Weyl connection to tangent bundle of hypersurface. Int. J. Maps Math. 2021, 4, 2–13. [Google Scholar]
  3. Altunbas, M.; Şengül, Ç. Metallic structures on tangent bundles of Lorentzian para-Sasakian manifolds. J. Mahani Math. Res. 2022, 12, 37–149. [Google Scholar] [CrossRef]
  4. Altunbas, M.; Bilen, L.; Gezer, A. Remarks about the Kaluza-Klein metric on tangent bundle. Int. J. Geo. Met. Mod. Phys. 2019, 16, 1950040. [Google Scholar] [CrossRef]
  5. Kazan, A.; Karadag, H.B. Locally decomposable golden tangent bundles with CheegerGromoll metric. Miskolc Math. Not. 2016, 17, 399–411. [Google Scholar] [CrossRef] [Green Version]
  6. Khan, M.N.I. Lifts of hypersurfaces with quarter-symmetric semi-metric connection to tangent bundles. Afr. Mat. 2014, 27, 475–482. [Google Scholar] [CrossRef]
  7. Kadaoui Abbassi, M.T.; Amri, N. Natural Paracontact Magnetic Trajectories on Unit Tangent Bundles. Axioms 2020, 9, 72. [Google Scholar] [CrossRef]
  8. Dida, H.M.; Ikemakhen, A. A class of metrics on tangent bundles of pseudo-Riemannian manifolds. Arch. Math. (BRNO) Tomus 2011, 47, 293–308. [Google Scholar]
  9. Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [Google Scholar] [CrossRef]
  10. Pandey, P.; Chaturvedi, B.B. On a Kahler manifold equipped with lift of a quarter-symmetric non-metric connection. Facta Univ. (NIS) Ser. Math. Inform. 2018, 33, 539–546. [Google Scholar]
  11. Tani, M. Prolongations of hypersurfaces of tangent bundles. Kodai Math. Semp. Rep. 1969, 21, 85–96. [Google Scholar] [CrossRef]
  12. Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor N.S. 1975, 29, 249–254. [Google Scholar]
  13. Barman, A. A special type of quarter-symmetric non-metric connection on P-Sasakian manifolds. Bull. Transilv. Univ. Bras. Ser. III Math. Inform. Phys. 2018, 11, 11–22. [Google Scholar]
  14. Friedmann, A.; Schouten, J.A. Uber die Geometrie der halbsymmetrischen Ubertragung. Math. Zeitschr. 1924, 21, 211–223. [Google Scholar] [CrossRef]
  15. Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensors. Tensor N.S. 1982, 38, 13–18. [Google Scholar]
  16. Mondol, A.K.; De, U.C. Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Anal. Appl. 2009, 1, 99–108. [Google Scholar]
  17. Mishra, R.S.; Pandey, S.N. On quarter-symmetric metric F-connections. Tensor N.S. 1980, 34, 1–7. [Google Scholar]
  18. Mukhopadhyay, S.; Roy, A.K.; Barua, B. Some properties of a quarter-symmetric metric connection on a Riemannian manifold. Soochow J. Math. 1991, 17, 205–211. [Google Scholar]
  19. Bahadir, O. P-Sasakian manifold with quarter-symmetric non-metric connection. Univers. J. Appl. Math. 2018, 6, 123–133. [Google Scholar] [CrossRef]
  20. Sular, S.; Özgür, C.; De, U.C. Quarter-symmetric metric connection in a Kenmotsu manifold. SUT J. Math. 2008, 44, 297–306. [Google Scholar] [CrossRef]
  21. Hendi, E.H.; Zagane, A. Geometry of tangent bundles with the horizontal Sasaki gradient metric. Differ. Geom.-Dyn. Syst. 2022, 24, 55–77. [Google Scholar]
  22. Yano, K.; Ishihara, S. Tangent and Cotangent Bundles; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
  23. Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Note in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509. [Google Scholar]
  24. De, U.C.; Sengupta, J. Quarter-symmetric metric connection on a Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Ser. A1 2000, 49, 7–13. [Google Scholar] [CrossRef]
  25. Özgür, C. On ϕ-conformally flat Lorenzian para-Sasakian manifolds. Rad. Math. 2003, 12, 99–106. [Google Scholar]
  26. Takahashi, T. Sasakian ϕ-symmetric spaces. Tohoku Math. J. 1977, 29, 91–113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.N.I.; De, U.C.; Velimirović, L.S. Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle. Mathematics 2023, 11, 53. https://doi.org/10.3390/math11010053

AMA Style

Khan MNI, De UC, Velimirović LS. Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle. Mathematics. 2023; 11(1):53. https://doi.org/10.3390/math11010053

Chicago/Turabian Style

Khan, Mohammad Nazrul Islam, Uday Chand De, and Ljubica S. Velimirović. 2023. "Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle" Mathematics 11, no. 1: 53. https://doi.org/10.3390/math11010053

APA Style

Khan, M. N. I., De, U. C., & Velimirović, L. S. (2023). Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold to Its Tangent Bundle. Mathematics, 11(1), 53. https://doi.org/10.3390/math11010053

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop