On the Discrete Approximation by the Mellin Transform of the Riemann Zeta-Function
Abstract
:1. Introduction
2. Some Lemmas
3. Proofs of Theorems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Motohashi, Y. A relation between the Riemann zeta-function and the hyperbolic Laplacian. Ann. Della Sc. Norm. Super. Pisa Cl. Sci. 1995, 22, 299–313. [Google Scholar]
- Motohashi, Y. Spectral Theory of the Riemann Zeta-Function; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Ivič, A. On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith. 2001, 99, 115–145. [Google Scholar] [CrossRef]
- Ivič, A.; Jutila, M.; Motohashi, Y. The Mellin transform of powers of the zeta-function. Acta Arith. 2000, 95, 305–342. [Google Scholar] [CrossRef]
- Jutila, M. The Mellin transform of the square of Riemann’s zeta-function. Period. Math. Hung. 2001, 42, 179–190. [Google Scholar] [CrossRef]
- Lukkarinen, M. The Mellin Transform of the Square of Riemann’s Zeta-Function and Atkinson Formula. Ph.D. Thesis, University of Turku, Turku, Finland, 2004. [Google Scholar]
- Korolev, M.; Laurinčikas, A. On the approximation by Mellin transform of the Riemann zeta-function. Axioms, submitted.
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Mathematics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1877. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Montgomery, H.L. Topics in Multiplicative Number Theory; Lecture Notes Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 227. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbaliauskienė, V.; Laurinčikas, A.; Šiaučiūnas, D. On the Discrete Approximation by the Mellin Transform of the Riemann Zeta-Function. Mathematics 2023, 11, 2315. https://doi.org/10.3390/math11102315
Garbaliauskienė V, Laurinčikas A, Šiaučiūnas D. On the Discrete Approximation by the Mellin Transform of the Riemann Zeta-Function. Mathematics. 2023; 11(10):2315. https://doi.org/10.3390/math11102315
Chicago/Turabian StyleGarbaliauskienė, Virginija, Antanas Laurinčikas, and Darius Šiaučiūnas. 2023. "On the Discrete Approximation by the Mellin Transform of the Riemann Zeta-Function" Mathematics 11, no. 10: 2315. https://doi.org/10.3390/math11102315