Summation Laws in Control of Biochemical Systems
Abstract
:1. Introduction
2. Results
2.1. The System
2.2. Control Coefficients
2.3. Setting the Time
2.4. Summation Laws: Derivation
3. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiele, I.; Swainston, N.; Fleming, R.M.T.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe, M.D.; et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 2013, 31, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Kacser, H.; Burns, J.A. The molecular basis of dominance. Genetics 1981, 97, 639–666. [Google Scholar] [CrossRef] [PubMed]
- Kacser, H.; Burns, J.A. The control of flux. Symp. Soc. Exp. Biol. 1973, 27, 65–104. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, R.; Rapoport, T.A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 1974, 42, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Tateson, R.W.; Barthelmess, I.B.; Porteous, D.J.; Donachie, W.D.; Kacser, H. Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem. J. 1981, 200, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Groen, A.K.; Wanders, R.J.A.; Westerhoff, H.V.; van der Meer, R.; Tager, J.M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 1982, 257, 2754–2757. [Google Scholar] [CrossRef] [PubMed]
- Bohnensack, R.; Küster, U.; Letko, G. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment. Biochim. Biophys. Acta 1982, 680, 271–280. [Google Scholar] [CrossRef]
- Wanders, R.J.; Groen, A.K.; Van Roermund, C.W.; Tager, J.M. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Eur. J. Biochem. 1984, 142, 417–424. [Google Scholar] [CrossRef]
- Gellerich, F.N.; Bohnensack, R.; Kunz, W. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Biochim. Biophys. Acta 1983, 722, 381–391. [Google Scholar] [CrossRef]
- Delgado, J.; Meruane, J.; Liao, J.C. Experimental determination of flux control distribution in biochemical systems: In vitro model to analyze transient metabolite concentrations. Biotechnol. Bioeng. 1993, 41, 1121–1128. [Google Scholar] [CrossRef]
- Letellier, T.; Malgat, M.; Rossignol, R.; Mazat, J.-P. Metabolic control analysis and mitochondrial pathologies. In Bioenergetics of the Cell: Quantitative Aspects; Saks, V.A., Ventura-Clapier, R., Leverve, X., Rossi, A., Rigoulet, M., Eds.; Springer: Boston, MA, USA, 1998; pp. 409–417. [Google Scholar] [CrossRef]
- Rognstad, R. Rate-limiting steps in metabolic pathways. J. Biol. Chem. 1979, 254, 1875–1878. [Google Scholar] [CrossRef] [PubMed]
- Kozuch, S.; Martin, J.M.L. The Rate-Determining Step is Dead. Long Live the Rate-Determining State! ChemPhysChem 2011, 12, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Blackman, F.F. Optima and Limiting Factors. Ann. Bot. 1905, 19, 281–295. [Google Scholar] [CrossRef]
- Zuo, J.; Tang, J.; Lu, M.; Zhou, Z.; Li, Y.; Tian, H.; Liu, E.; Gao, B.; Liu, T.; Shao, P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front. Immunol. 2021, 12, 779787. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Duan, Z.; Li, Z.; Ge, F.; Wei, R.; Kong, L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 2022, 13, 1091779. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, E.A.; Start, C. Regulation in Metabolism; John Wiley & Sons: New York, NY, USA, 1973; p. 349. [Google Scholar]
- Forman, N.G.; Wilson, D.F. Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase. J. Biol. Chem. 1983, 258, 8649–8655. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, C.; Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015, 347, 78–81. [Google Scholar] [CrossRef]
- Katselou, M.G.; Matralis, A.N.; Kourounakis, A.P. Multi-target drug design approaches for multifactorial diseases: From neurodegenerative to cardiovascular applications. Curr. Med. Chem. 2014, 21, 2743–2787. [Google Scholar] [CrossRef]
- Olsen, J.; Overvad, K. The Concept of Multifactorial Etiology of Cancer. Pharmacol. Toxicol. 1993, 72, 33–38. [Google Scholar] [CrossRef]
- Phung, O.J.; Sobieraj, D.M.; Engel, S.S.; Rajpathak, S.N. Early combination therapy for the treatment of type 2 diabetes mellitus: Systematic review and meta-analysis. Diabetes Obes. Metab. 2014, 16, 410–417. [Google Scholar] [CrossRef]
- Hoeksema, M.; Jonker, M.J.; Bel, K.; Brul, S.; Ter Kuile, B.H. Genome rearrangements in Escherichia coli during de novo acquisition of resistance to a single antibiotic or two antibiotics successively. BMC Genom. 2018, 19, 973. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef] [PubMed]
- Acerenza, L.; Sauro, H.M.; Kacser, H. Control analysis of time-dependent metabolic systems. J. Theor. Biol. 1989, 137, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Bier, M.; Teusink, B.; Kholodenko, B.N.; Westerhoff, H.V. Control analysis of glycolytic oscillations. Biophys. Chem. 1996, 62, 15–24. [Google Scholar] [CrossRef]
- Demin, O.V.; Kholodenko, B.N.; Westerhoff, H.V. Metabolic control theory of biochemical oscillating systems. 2. Calculation of the periodic control coefficients in terms of local kinetic properties. Biochemistry 1996, 61, 435–450. [Google Scholar]
- Reder, C. Metabolic control theory: A structural approach. J. Theor. Biol. 1988, 135, 175–201. [Google Scholar] [CrossRef]
- Giersch, C. Control analysis of metabolic networks. Eur. J. Biochem. 1988, 174, 509–513. [Google Scholar] [CrossRef]
- Westerhoff, H.V.; Van Dam, K. Thermodynamics and Control of Biological Free Energy Transduction; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Karol, M.D. Mean residence time and the meaning of AUMC/AUC. Biopharm. Drug Dispos. 1990, 11, 179–181. [Google Scholar] [CrossRef]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; John Wiley & Sons: London, UK, 1971; p. 306. [Google Scholar]
- Keizer, J. Statistical Thermodynamics of Nonequilibrium Processes; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Burns, J.A.; Cornish-Bowden, A.; Groen, A.K.; Heinrich, R.; Kacser, H.; Porteous, J.W.; Rapoport, S.M.; Rapoport, T.A.; Stucki, J.W.; Tager, J.M.; et al. Control analysis of metabolic systems. Trends Biochem. Sci. 1985, 10, 16. [Google Scholar] [CrossRef]
- Higgins, J. Analysis of sequential reactions. Ann. N. Y. Acad. Sci. 1963, 108, 305–321. [Google Scholar] [CrossRef]
- Savageau, M.A. Parameter Sensitivity as a Criterion for Evaluating and Comparing the Performance of Biochemical Systems. Nature 1971, 229, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Conradie, R.; Westerhoff, H.V.; Rohwer, J.M.; Hofmeyr, J.H.; Snoep, J.L. Summation theorems for flux and concentration control coefficients of dynamic systems. Syst. Biol. (Stevenage) 2006, 153, 314–317. [Google Scholar] [CrossRef]
- Kholodenko, B.N.; Molenaar, D.; Schuster, S.; Heinrich, R.; Westerhoff, H.V. Defining control coefficients in nonideal metabolic pathways. Biophys. Chem. 1995, 56, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Hevia, E.; Torres, N.V.; Sicilia, J. A generalization of metabolic control analysis to conditions of no proportionality between activity and concentration of enzymes. J. Theor. Biol. 1990, 142, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Snoep, J.L.; van der Weijden, C.C.; Andersen, H.W.; Westerhoff, H.V.; Jensen, P.R. DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase. Eur. J. Biochem. 2002, 269, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Fell, D.A. Understanding the Control of Metabolism; Portland Press: South Portland, ME, USA, 1997. [Google Scholar]
- Stucki, J.W. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur. J. Biochem. 1980, 109, 269–283. [Google Scholar] [CrossRef]
- Hornberg, J.J.; Bruggeman, F.J.; Binder, B.; Geest, C.R.; de Vaate, A.J.M.B.; Lankelma, J.; Heinrich, R.; Westerhoff, H.V. Principles behind the multifarious control of signal transduction—ERK phosphorylation and kinase/phosphatase control. FEBS J. 2005, 272, 244–258. [Google Scholar] [CrossRef]
- Kholodenko, B.N.; Westerhoff, H.V.; Schwaber, J.; Cascante, M. Engineering a Living Cell to Desired Metabolite Concentrations and Fluxes: Pathways with Multifunctional Enzymes. Metab. Eng. 2000, 2, 1–13. [Google Scholar] [CrossRef]
- Savageau, M.A. Biochemical Systems Analysis: A Study of Function and Design in Moleuclar Biology; Addison-Wesley: Reading, MA, USA, 1976. [Google Scholar]
- Coelho, P.M.B.M.; Salvador, A.; Savageau, M.A. Quantifying Global Tolerance of Biochemical Systems: Design Implications for Moiety-Transfer Cycles. PLoS Comput. Biol. 2009, 5, e1000319. [Google Scholar] [CrossRef]
- Curto, R.; Sorribas, A.; Cascante, M. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Model definition and nomenclature. Math. Biosci. 1995, 130, 25–50. [Google Scholar] [CrossRef]
- Sorribas, A.; Savageau, M.A. A comparison of variant theories of intact biochemical systems. II. flux-oriented and metabolic control theories. Math. Biosci. 1989, 94, 195–238. [Google Scholar] [CrossRef] [PubMed]
- Cornish-Bowden, A. Fundamentals of Enzyme Kinetics; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Edwards, J.S.; Ibarra, R.U.; Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 2001, 19, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ulas, T.; Riemer, S.A.; Zaparty, M.; Siebers, B.; Schomburg, D. Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus. PLoS ONE 2012, 7, e43401. [Google Scholar] [CrossRef] [PubMed]
- Hoefnagel, M.H.N.; Starrenburg, M.J.C.; Martens, D.E.; Hugenholtz, J.; Kleerebezem, M.; Van Swam, I.I.; Bongers, R.; Westerhoff, H.V.; Snoep, J.L. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology 2002, 148, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Kacser, H.; Burns, J.A. MOlecular democracy: Who shares the controls? Biochem. Soc. Trans. 1979, 7, 1149–1160. [Google Scholar] [CrossRef]
- Westerhoff, H.V. Trumping the Trumps: Addressing Complexities through Biological Rationality; Systems Biology Amsterdam: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Dicke, R.H. Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 1962, 125, 2163–2167. [Google Scholar] [CrossRef]
- Hofmeyr, J.H.; Rohwer, J.M. Supply-demand analysis a framework for exploring the regulatory design of metabolism. Methods Enzym. 2011, 500, 533–554. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westerhoff, H.V. Summation Laws in Control of Biochemical Systems. Mathematics 2023, 11, 2473. https://doi.org/10.3390/math11112473
Westerhoff HV. Summation Laws in Control of Biochemical Systems. Mathematics. 2023; 11(11):2473. https://doi.org/10.3390/math11112473
Chicago/Turabian StyleWesterhoff, Hans V. 2023. "Summation Laws in Control of Biochemical Systems" Mathematics 11, no. 11: 2473. https://doi.org/10.3390/math11112473
APA StyleWesterhoff, H. V. (2023). Summation Laws in Control of Biochemical Systems. Mathematics, 11(11), 2473. https://doi.org/10.3390/math11112473