Next Article in Journal
Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications
Next Article in Special Issue
Mathematical Modeling of Neurons and Brain Networks: Fundamental Principles and Special Applications
Previous Article in Journal
Graphical Local Genetic Algorithm for High-Dimensional Log-Linear Models
Previous Article in Special Issue
Mathematical Modelling of Physiological Effects Caused by a Glycine Receptors Post-Synaptic Density Spatial Polymorphism
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data

by
Anna Boronina
1,
Vladimir Maksimenko
1,2 and
Alexander E. Hramov
2,3,*
1
Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, Russia
2
Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, 620002 Ekaterinburg, Russia
3
Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(11), 2515; https://doi.org/10.3390/math11112515
Submission received: 1 May 2023 / Revised: 27 May 2023 / Accepted: 29 May 2023 / Published: 30 May 2023

Abstract

:
Applying machine learning algorithms to graph-structured data has garnered significant attention in recent years due to the prevalence of inherent graph structures in real-life datasets. However, the direct application of traditional deep learning algorithms, such as Convolutional Neural Networks (CNNs), is limited as they are designed for regular Euclidean data like 2D grids and 1D sequences. In contrast, graph-structured data are in a non-Euclidean form. Graph Neural Networks (GNNs) are specifically designed to handle non-Euclidean data and make predictions based on connectivity rather than spatial structure. Real-life graph data can be broadly categorized into two types: spatially-invariant graphs, where the link structure between nodes is independent of their spatial positions, and spatially-variant graphs, where node positions provide additional information about the graph’s properties. However, there is limited understanding of the effect of spatial variance on the performance of Graph Neural Networks. In this study, we aim to address this issue by comparing the performance of GNNs and CNNs on spatially-variant and spatially-invariant graph data. In the case of spatially-variant graphs, when represented as adjacency matrices, they can exhibit Euclidean-like spatial structure. Based on this distinction, we hypothesize that CNNs may outperform GNNs when working with spatially-variant graphs, while GNNs may excel on spatially-invariant graphs. To test this hypothesis, we compared the performance of CNNs and GNNs under two scenarios: (i) graphs in the training and test sets had the same connectivity pattern and spatial structure, and (ii) graphs in the training and test sets had the same connectivity pattern but different spatial structures. Our results confirmed that the presence of spatial structure in a graph allows for the effective use of CNNs, which may even outperform GNNs. Thus, our study contributes to the understanding of the effect of spatial graph structure on the performance of machine learning methods and allows for the selection of an appropriate algorithm based on the spatial properties of the real-life graph dataset.

1. Introduction

The increasing volume and complexity of real-life data structures push researchers to shift from conventional machine learning to deep learning.
Conventional machine-learning techniques have limited ability to process data in their raw form: hence, demanding careful engineering and substantial domain expertise to transform the raw data into a feature vector that can serve as a proper input to the algorithm.
Deep learning methods allow replacing hand-engineered features with multilayer networks trained to discover the structures in data. Therefore, a machine learning algorithm can take raw data to automatically discover hidden structures needed for detection or classification [1].
The brightest example of deep learning algorithms includes convolutional neural networks (CNNs) used to process images or videos, where the raw data comes in the form of ordered 2-D or 1-D arrays of pixels. Each layer of a CNN performs convolutional operations on the image followed by a non-linear activation. The keys of CNNs are local connection, shared weights, and the use of multiple layers [2].
The main limitation of the CNNs is that they can only operate on regular Euclidean data, such as images (2-D grids) and texts (1-D sequences). At the same time, much real-life data comes in the non-Euclidean form, e.g., graph-structured data. The specific examples include but are not limited to social networks, DNA and RNA sequences, transportation, and brain neural networks. Therefore, solving classification, clusterization, and other problems on graphs becomes of great interest and importance [3].
In recent years, graph neural networks (GNN) have attracted attention from the machine-learning community. Areas dealing with graph-structured data, such as social networks, molecular structures, and recommendation systems, have undergone significant advancements through the application of GNNs [4,5]. There is also interest in applying GNNs to the analysis of functional brain networks, e.g., to classify patients with major depressive disorder and healthy subjects [6].
GNN enables learning from non-Euclidean data. The absence of a fixed and consistent metric space in such data presents a challenge when applying traditional algorithms that rely on fixed geometries. By leveraging the underlying graph structure, GNNs can effectively capture the complex relationships between nodes and edges in the data and learn to make predictions based on that structure [7].
The real-life graph data fall into two broad categories: spatially-invariant and spatially-variant graphs. In a spatially-invariant graph, the structure of links between the nodes does not depend on their position in space. A network of social interactions is an example. In a spatially-variant graph, the location of the nodes matters and provides additional information about the graph’s properties. Examples include molecular structures, brain networks, etc. There is a limited understanding of how the performance of GNNs differs between these two classes of graphs and how we can leverage information about the spatial structure to improve the performance of machine learning models.
We can represent a graph with an m × m adjacency matrix where m reflects the number of nodes. Each element ( i , j ) of this matrix defines the link between the i-th and j-th nodes. In the spatially invariant graph, if you shuffle its edge list or the columns of its adjacency matrix, it is still the same graph (See Figure 1a). Figure 1 shows the explanatory case of a small graph consisting of the five nodes (A, B, C, D, E) and four links (A-E, A-C, A-B, B-D). The different panels illustrate the cases of the spatially-invariant (a) and the spatially-variant (b) graphs. The figure also presents their adjacency matrices. On the left, the matrix has columns and rows ordered in alphabetical node order: on the row for node A (first row), we can read that it is connected to E and C. On the right-hand side, the same graph is shown with the different locations of the nodes. On the right, the adjacency matrix is shuffled (the columns are no longer sorted alphabetically). So in the case of the spatially-invariant graphs (a), two matrices give a valid representation of the graph (A is still connected to E and C). For the spatially-variant graphs (b), a shuffled adjacency matrix cannot suffer as a valid representation.
We suggest that an adjacency matrix provides the Euclidean form for a spatially-variant graph but becomes invariant to the permutation of nodes’ indexes in a spatially-invariant graph. Thus, we hypothesize that CNN may outperform GNN when working with spatially-variant graphs while GNN will perform better on the spatially-invariant graphs.
To test this hypothesis, we propose a simple algorithm to generate graphs with predefined spatial structures and connectivity patterns (a sub-structure of the links that the machine learning algorithm should learn). We trained and tested CNN and GNN in two cases. First, the graphs in the training and test sets had the same connectivity pattern (structure of the links between nodes) and spatial structure (location of nodes). Second, graphs in the training and test sets had the same connectivity pattern but different spatial structures.
Our results confirmed the existence of spatial structure in the graph enables using CNN, which may even outperform GNN in some cases. The main contribution of our results is that having prior knowledge about the spatial structure in real-life datasets enables the selection of the most appropriate machine learning algorithm to achieve optimal performance.

2. Materials and Methods

2.1. Graph Generation Algorithm

Here we tested the accuracy of the deep learning algorithms in the classification task performed on the graph-structured data. Therefore, we were required to create two classes of graphs that differed in their connectivity pattern. For simplicity, we defined negative class as fully-connected graphs, where the links’ weights were sampled from the half-normal distribution N ( μ 0 = 0 , σ 2 = 0.169 ) . In the second positive class, we generated graphs containing a predefined segregated connectivity pattern. We divided all graph nodes into the n r equal regions (each included n p r nodes, and increased the link’s weight inside 6 regions (we called them active regions through the text). The link’s weights for the active regions were sampled from the normal distribution N ( μ 1 , σ 2 = 0.169 ) , where μ 1 varied from 0 to 7 with the step n = 1 .
The value of n is a step number that signifies the distance between μ 0 and μ 1 (Figure 2). At n = 0 (Figure 2a) the distributions are the same, meaning that links’ weights were sampled from the same distribution in the entire graph. This results in the same structure across both classes. At n = 1 , μ 1 = 1 (dashed line in Figure 2b), meaning that the nodes in the active regions get obtain stronger link weights. Further increase of n results in the strengthening difference in the link weights between the active regions and the rest of the graph (Figure 2c,d).
To summarize, all graphs have m = 120 nodes with n r = 12 pre-defined regions, 50% of which are active, and n varies in the range of [ 0 , 7 ] , determining how distinguished the link weight in active regions from the links in the rest of a graph is.
It should be noted that the algorithm is non-deterministic. Given the same input parameters ( μ 0 , m u 1 , σ ), every outcome is different due to sampling. It allowed us to generate graphs that exhibit structural similarities but differ in terms of edge weights.
Examining the adjacency matrices, one can see that the graphs in the positive class have a certain pattern on the adjacency matrix (compare Figure 3 and Figure 4), which becomes more pronounced with the growing n. This pattern has a diagonal structure and depends on the ordered number of active regions. When activating the odd regions, this pattern takes the form of an alternating sequence of squares.

2.2. Datasets

This section provides a description of both datasets: spatially-variant and spatially-invariant. It should be noted that training and test tests of positive class within each dataset were different, while negative class was always the same.

2.2.1. Negative Class in Both Datasets

To test if the deep learning algorithms may handle spatially-invariant graphs, we created two datasets. Each dataset has a positive and a negative class. Recalling Section 2.1, the graphs of negative class are generated with parameter n = 0 . By design, such the graphs do not have regions. The weights for nodes’ connections are sampled from the half-normal distribution N ( μ 0 = 0 , σ 2 = 0.169 ) . Figure 3 shows the typical adjacency matrices for the negative class. Panels (a-d) correspond to the different values of n defining the difference in the link weight between the active regions and the rest of the graph. Since in the negative class, we sampled the link weights from a single distribution for all regions, adjacency matrices demonstrate the homogeneous distribution of the weights that barely depends on n.

2.2.2. Positive Class in the Spatially-Variant Dataset

The first dataset reflected the case of the spatially-variant graph. The graphs in the training and test sets had the same connectivity pattern (structure of the links between nodes) and spatial structure (location of nodes). To generate the same connectivity pattern, we keep the same number of active regions across the sets. To generate the same spatial structure, we make the same regions active in the training and test sets. To reduce overfitting, we make the structure of the training and test graphs differ from each other. We achieved it by shifting the spatial pattern along the horizontal and vertical dimensions. Specifically, we set the odd regions (1, 3, 5, 7, 9, and 11) active in the training set (Figure 4), and the even regions (2, 4, 6, 8, 10, and 12) – in the test set (Figure 5).

2.2.3. Positive Class in the Spatially-Invariant Dataset

The second dataset reflected the case of the spatially-invariant graph. The graphs in the training and test sets had the same connectivity pattern but different spatial structures. To generate the same connectivity pattern, we keep the same number of active regions across the sets. To generate a distinct spatial structure, we make the different regions active in the training and test sets. The training set, depicted in Figure 6, comprised active regions 1–4 and 11, 12, while active regions 5–10 were incorporated in the test set, as shown in Figure 7.
Figure 8 summarizes the spatially-invariant and spatially-variant datasets on which both GNN and CNN are trained and tested. It should be noted that the examples are shown for n = 7 to highlight the active regions, while we formed similar datasets for various n.
The training set for both datasets includes 256 samples for each class, and the validation and test sets contain 32 samples per class. It’s important to note that each dataset is balanced and the use of weight sampling ensures that every graph is unique.

2.3. Graph Metrics

Researchers use clustering [8,9,10] and modularity [11,12,13] to measure network segregation. The main difference between the two is that the former does not take regional information (the region a node belongs to) into account, while the latter does.
For unweighted graphs, node u’s clustering depends on the number of triangles passing through the node, T ( u ) , and the degree of the node, d e g ( u ) :
c u = 2 T ( u ) d e g ( u ) ( d e g ( u ) 1 ) .
However, in our case, the graphs are weighted, so we used the formula provided by networkx library and taken from Onnela et al. [9]. It uses the geometric average of the subgraph formed by nodes u, w, and u:
c u = 1 d e g ( u ) ( d e g ( u ) 1 ) ) v w ( w ^ u v w ^ u w w ^ v w ) 1 / 3 , w ^ u v = w u v m a x ( w ) ,
where w u v is the weight of connection between u and v, m a x ( w ) is the maximum weight in the network.
The formula for modularity is more complicated due to taking regional information into account. The metric quantifies the degree to which a network is split into densely connected regions. To calculate modularity, we used bct library.
Q i = 1 I i , j N w i j k i k j I δ r i , r j ,
where w i j is the weight of connection between nodes i and j, k i = Σ w i j is the degree of node i, I is the sum of all weights in the network; it is a normalizing constant, and
δ r i , r j = 1 , if nodes i and j are in the same region , 0 , otherwise .
Global clustering and modularity of a graph is the average of its nodes’ corresponding metric values. Weighted clustering and modularity measure segregation differently, and further sections depict the difference.

2.4. Graph Neural Network

GNN consists of graph convolutional layers defined by Kipf et al. [14], Leaky ReLU as activation, dropout layers, and linear layers in the end to obtain output. Figure 9 shows the architecture (dropout layers are not shown). Overall, the model has 3473 trainable parameters.
To train the model, we used an Adam optimizer with a learning rate of 0.002, weight decay equals zero. To calculate loss, we used Binary Cross Entropy with logits that combines sigmoid activation and Binary Cross Entry loss.

2.5. Convolutional Neural Network

CNN consists of graph convolutional layers, pooling layers, batch normalization, ReLU as activation, dropout layers, and linear layers in the end to obtain output. Figure 10 shows the architecture (dropout layers are not shown). Overall, the model has 9084 trainable parameters.
A graph is a 1-D image, e.g., gray-scaled because the pixel at index ( i , j ) is a number corresponding to the edge’s weight e ( i , j ) .
To train the model, we used an Adam optimizer with a learning rate of 0.001 and weight decay of 0.0005. To calculate loss, we used binary cross entropy with logits.
We used adjacency matrix representation to turn a graph into an image. This way, our CNN took a batch of 1-D images as input.

2.6. Performance Evaluation

CNN- and GNN-specific parameters were described in the sections above. However, the models have maximum of 100 epochs per training set with early stopping monitoring validation loss. In this case it means that if the model’s loss stopped decreasing for 3 epochs, the training stops. Both models’ hyper-parameters (e.g., learning rate and weight decay) were set through Ray Tune library with grid searcher based on Bayesian Optimization (BayesOptSearch). We ran an optimization algorithm in the following parameter space:
  • Number of convolutional modules (choice: [1, 2 (CNN), 3 (GNN), 4]);
  • Learning rate (choice: [0.0001, 0.001 (CNN), 0.002 (GNN), 0.005, 0.01]);
  • Weight decay (choice: [0 (GNN), 0.00001, 0.0005 (CNN), 0.001]).
The tuner was set to monitor validation loss, meaning that how fast the loss decreases is a crucial factor to a chosen set of hyperparameters. The tuner was run on datasets for n = [1, 4, 7], and we chose the hyperparameters that proved most optimal more often.
For both models, we used a validation set to fine-tune the model and then tested it on the test sets. Accuracy, recall and specificity were calculated as an average across batches of the training and test sets.

3. Results

First, we analyzed how the graph properties change with the varying share of the active regions and the weights inside these regions. We used clustering and modularity coefficients (refer to Methods) to quantify the graph properties. Figure 11 presents the results. The modularity growth follows the step number n. With each step, the weights inside active regions further exceed the ones in the rest of the graph (as defined by an algorithm of the dataset generation). Thus, the stronger connection inside the active regions causes higher modularity. The more regions that are active, the higher the graph’ modularity. The clustering coefficient barely responds to the changing weight within active regions. It remains unchanged with an increase in the number of active regions, as depicted in Figure 11.
Then, we tested the performance of the GNN and CNN in the graph classification task for different weights within the active regions. Figure 12 provides complete GNN’s and CNN’s performance information. The step identifies to what extent the weights within the active regions c Panels (a) and (b) correspond to the training and test sets. We considered two graph types: spatially-variant and spatially-invariant. Recall that the spatially-variant type represents the case when the adjacency matrices have a similar structure among the training and test set but shifted along the horizontal and vertical dimensions as depicted in Figure 4 and Figure 5. On the contrary, spatially-invariant corresponds to the case when the spatial structure on the adjacency matrices differs between the training and test sets. Unlike the spatially-variant case, the spatial structure of the adjacency matrices in the test set can not be obtained from the training set by shifting along vertical and horizontal axes (Figure 6 and Figure 7).
Metrics of accuracy, recall, and specificity show that at step n = 0 GNN labels every graph as negative, and then, at step n = 1 it labels every graph as positive. It shows how difficult it is for GNN to distinguish between the two classes because at n = 0 , there is no distinction between the classes, and at n = 1 there is very little distinction. After and including n = 2 , GNN becomes better at recognizing both classes, and recall and specificity report nearly the same numbers, which shows little bias towards either of the labels.
As for CNN, we see that it overfits the training set for both labels: positive and negative. In the case of spatially-invariant graphs, it becomes biased towards positive labels, as specificity in the test set is low, while recall is high. However, in the case of spatially-variant graphs, after n = 1 , CNN manages to become good and even excellent at predicting both labels.
Convolutional Neural Network. Despite overfitting on both training sets, the CNN still showed an increase in accuracy for the test set of the spatially-variant dataset, which had a similar structure to the training set. At n = 0 , where there is no differentiation between active and inactive regions, the accuracy for both test datasets was around 50%. As n increased, so did the accuracy for the spatially-variant test set, but the CNN did not appear to have learned anything for the spatially-invariant test set, as its accuracy remained around 50%. CNN successfully learned that Figure 4 and Figure 5 depicted the same structure, but it was not able to do the same for another dataset, Figure 6 and Figure 7, which had visually different structures.
Graph Neural Network. The GNN demonstrated a similar level of performance for the test sets of both datasets, suggesting that it did not distinguish much between the two. As expected, the GNN’s performance improved as n increased.

4. Discussion and Conclusions

We tested if the convolutional neural network could outperform the graph neural network in the classification task involving graphs with a spatial structure, i.e., the locations of nodes are predefined. For simplicity, we considered segregated graphs, i.e., including the clusters of the densely connected nodes.
We used two different graph metrics of segregation—clustering coefficient, and modularity. The clustering coefficient captures the existence of segregated structures in the spatially-invariant graphs. On the contrary, modularity uses information about the spatial location of nodes; therefore, quantifies segregated patterns in the spatially variant graph. Our results show that increasing link weights inside the predefined graph regions causes modularity to grow but barely affects the value of the clustering coefficient. Thus, we suggest that the term segregatio’ has a different meaning in the spatially variant and spatially invariant graphs.
For the spatially-invariant graphs, it defines that nodes tend to create tightly knit groups characterized by a relatively high density of links; this likelihood tends to be greater than the average probability of a link randomly established between two nodes. However, there is no difference in whether the nodes in groups are the neighbors in space or not. This situation is usually observed in social networks, when the link between individuals may be strong even if they live on opposite sides of the globe [15,16].
In spatially-variant graphs, segregation implies that the nodes being neighbors in space form densely connected clusters in the graph. An example regarding the spatial location matter is the brain’s functional networks [17]. For example, when we respond to sensory stimuli, the neuronal populations in the sensory-processing anatomical regions usually form synchronous clusters (segregation) [18,19]. Their local synchronization provokes the growing power of the high-frequency electrical signals recorded in these areas [20]. At the more high-level processing stages, neural populations belonging to the distant brain areas start interacting, which changes the brain network mode from segregation to integration [21] due to adaptation processes [22,23].
We introduced regions inside a graph and distributed nodes between these regions. Therefore, we considered spatially-variant graphs that mostly resemble the case of brain functional networks [17,21] rather than social interactions [24,25]. Therefore, modularity was a more adequate measure of segregation than the clustering coefficient.
Then, we showed that the convolutional neural network outperforms the graph neural network on the graph data if the spatial pattern on the adjacency matrix was similar across the training and test sets. It should be noted that we did not use a fully similar pattern. As shown in Figure 6, the adjacency matrix pattern was shifted in the test set as compared to the training set. At the same time, CNN handled this pattern well due to its ability to efficiently extract and process spatial features from the data. Since the relative location of active regions in the image did not change, CNN could identify them and classify them correctly.
The similarity between the adjacency matrices means that the link weights were high between the nodes in the same spatial regions in the training and test sets. Therefore, CNN learned to identify the segregation structure with a certain spatial configuration. This funding emphasizes the potential advantage of CNNs in the tasks with spatially variant graphs, including brain functional networks where the node location reflects anatomical features.
Finally, we showed that the graph neural network outperforms the convolutional neural network when the spatial pattern on the adjacency matrix changes between the training and test sets. This means that the link weights were high between the nodes in the different spatial regions in the training and test sets. According to the global graph properties reflected by the modularity and clustering, the training and test graph sets were the same because of the similar number of active regions. Unlike CNN, GNN could handle it because it does not take any spatial information of the nodes into account, while CNN does. The features that GNN cares about (number of active regions, strength of connectivity inside the active regions) did not change; hence, the performance did not change. In social networks, it means that people formed several communities, where the size of these communities and the number of communities remained the same but the people participating in the communities were different. For the brain network structure, the sensory-motor integration task may produce different patterns depending on the modality of sensory information. Thus, visual information will induce neural synchronization in the occipital (visual) area, but auditory information in the temporal (auditory) area. Together with the sensory-related areas, there will be activation in frontal and motor brain zones.
In conclusion, we define the areas where the CNN and GNN can be applied to graph data as follows:
  • GNN handles the situations when the overall changes in the graph structure are of interest, e.g., a transition from segregation to integration, formation of communities, etc. GNN does not require nodes to have predefined spatial locations.
  • CNN handles the situations when the changes in a particular part of the graph are of interest, e.g., whether the particular nodes of interest changed their interaction. CNN requires nodes to have predefined spatial locations.
Applying machine learning algorithms to graph-structured data has been attracting great attention in recent years [26]. Approaches in this direction fall into two broad categories. Firstly, the data-level approach involves learning graph representations in a low-dimensional Euclidean space through embedding techniques [3]. Secondly, the model-level approach involves modifying traditional machine-learning algorithms to handle graph data. One of these techniques is graph kernels, which enable kernel-based learning approaches such as SVMs to work directly on graphs [27]. Another approach is formulating CNNs in the context of spectral graph theory [28]. Additional approaches include advanced convolutional procedures such as spatial convolution utilizing a random walk [29] or convolutional filters using the Gaussian mixture model [30]. In this context, our results contribute to the data-level approach by demonstrating that in certain situations, CNNs can be directly applied to 2D adjacency matrices.
As the main limitation, we highlight the robustness of the network performances against noise which is always present in real-life datasets. In our study, we account for the noise effect by incorporating the variance of the Gaussian distributions of the network weights. We hypothesize that increasing the noise will raise the minimum value of n at which the GNN can effectively distinguish between the classes, as shown in Figure 12, Figure 13 and Figure 14. However, it is important to note that obtaining a comprehensive understanding of the noise effect requires a thorough investigation, which is currently the subject of ongoing research.

Author Contributions

Conceptualization, A.E.H.; Formal analysis, V.M.; Investigation, A.B.; Methodology, A.B., V.M. and A.E.H.; Project administration, V.M. and A.E.H.; Resources, A.E.H.; Software, A.B. and V.M.; Supervision, A.E.H.; Validation, A.B. and V.M.; Visualization, V.M.; Writing—original draft, A.B. and V.M.; Writing—review & editing, A.E.H. All authors have read and agreed to the published version of the manuscript.

Funding

The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. A.E.H. also extends thanks to support President Program for Leading Scientific School Support (grant NSH-589.2022.1.2).

Data Availability Statement

Available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
  2. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
  3. Zhai, Z.; Staring, M.; Zhou, X.; Xie, Q.; Xiao, X.; Els Bakker, M.; Kroft, L.J.; Lelieveldt, B.P.; Boon, G.J.; Klok, F.A.; et al. Linking convolutional neural networks with graph convolutional networks: Application in pulmonary artery-vein separation. In Proceedings of the Graph Learning in Medical Imaging: First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019; Proceedings 1. Springer: Berlin/Heidelberg, Germany, 2019; pp. 36–43. [Google Scholar]
  4. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
  5. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
  6. Pitsik, E.N.; Maximenko, V.A.; Kurkin, S.A.; Sergeev, A.P.; Stoyanov, D.; Paunova, R.; Kandilarova, S.; Simeonova, D.; Hramov, A.E. The topology of fMRI-based networks defines the performance of a graph neural network for the classification of patients with major depressive disorder. Chaos Solitons Fractals 2023, 167, 113041. [Google Scholar] [CrossRef]
  7. Asif, N.A.; Sarker, Y.; Chakrabortty, R.K.; Ryan, M.J.; Ahamed, M.H.; Saha, D.K.; Badal, F.R.; Das, S.K.; Ali, M.F.; Moyeen, S.I.; et al. Graph neural network: A comprehensive review on non-euclidean space. IEEE Access 2021, 9, 60588–60606. [Google Scholar] [CrossRef]
  8. Hadley, J.A.; Kraguljac, N.V.; White, D.M.; Ver Hoef, L.; Tabora, J.; Lahti, A.C. Change in brain network topology as a function of treatment response in schizophrenia: A longitudinal resting-state fMRI study using graph theory. NPJ Schizophr. 2016, 2, 16014. [Google Scholar] [CrossRef] [PubMed]
  9. Onnela, J.P.; Saramäki, J.; Kertész, J.; Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 2005, 71, 065103. [Google Scholar] [CrossRef]
  10. Saramäki, J.; Kivelä, M.; Onnela, J.P.; Kaski, K.; Kertesz, J. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef]
  11. Wang, R.; Liu, M.; Cheng, X.; Wu, Y.; Hildebrandt, A.; Zhou, C. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc. Natl. Acad. Sci. USA 2021, 118, e2022288118. [Google Scholar] [CrossRef]
  12. Sun, Y.; Danila, B.; Josić, K.; Bassler, K.E. Improved community structure detection using a modified fine-tuning strategy. EPL (Europhys. Lett.) 2009, 86, 28004. [Google Scholar] [CrossRef]
  13. Rubinov, M.; Sporns, O. Weight-conserving characterization of complex functional brain networks. Neuroimage 2011, 56, 2068–2079. [Google Scholar] [CrossRef]
  14. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
  15. Adamic, L.A.; Adar, E. Friends and neighbors on the web. Soc. Netw. 2003, 25, 211–230. [Google Scholar] [CrossRef]
  16. Hansen, D.; Shneiderman, B.; Smith, M.A. Analyzing Social Media Networks with NodeXL: Insights from A Connected World; Morgan Kaufmann: Burlington, MA, USA, 2010. [Google Scholar]
  17. Park, H.J.; Friston, K. Structural and functional brain networks: From connections to cognition. Science 2013, 342, 1238411. [Google Scholar] [CrossRef]
  18. Maksimenko, V.A.; Runnova, A.E.; Frolov, N.S.; Makarov, V.V.; Nedaivozov, V.; Koronovskii, A.A.; Pisarchik, A.; Hramov, A.E. Multiscale neural connectivity during human sensory processing in the brain. Phys. Rev. E 2018, 97, 052405. [Google Scholar] [CrossRef]
  19. Maksimenko, V.A.; Frolov, N.S.; Hramov, A.E.; Runnova, A.E.; Grubov, V.V.; Kurths, J.; Pisarchik, A.N. Neural interactions in a spatially-distributed cortical network during perceptual decision-making. Front. Behav. Neurosci. 2019, 13, 220. [Google Scholar] [CrossRef]
  20. Maksimenko, V.A.; Lüttjohann, A.; Makarov, V.V.; Goremyko, M.V.; Koronovskii, A.A.; Nedaivozov, V.; Runnova, A.E.; van Luijtelaar, G.; Hramov, A.E.; Boccaletti, S. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys. Rev. E 2017, 96, 012316. [Google Scholar] [CrossRef]
  21. Hramov, A.E.; Frolov, N.S.; Maksimenko, V.A.; Kurkin, S.A.; Kazantsev, V.B.; Pisarchik, A.N. Functional networks of the brain: From connectivity restoration to dynamic integration. Physics-Uspekhi 2021, 64, 584. [Google Scholar] [CrossRef]
  22. Makarov, V.; Koronovskii, A.; Maksimenko, V.; Hramov, A.; Moskalenko, O.; Buldu, J.M.; Boccaletti, S. Emergence of a multilayer structure in adaptive networks of phase oscillators. Chaos Solitons Fractals 2016, 84, 23–30. [Google Scholar] [CrossRef]
  23. Pitsik, E.; Makarov, V.; Kirsanov, D.; Frolov, N.; Goremyko, M.; Li, X.; Wang, Z.; Hramov, A.; Boccaletti, S. Inter-layer competition in adaptive multiplex network. New J. Phys. 2018, 20, 075004. [Google Scholar] [CrossRef]
  24. Majeed, A.; Rauf, I. Graph theory: A comprehensive survey about graph theory applications in computer science and social networks. Inventions 2020, 5, 10. [Google Scholar] [CrossRef]
  25. Zweig, K.A.; Zweig, K.A. Graph theory, social network analysis, and network science. In Network Analysis Literacy. A Practical Approach to the Analysis of Networks; Lecture Notes in Social Networks; Springer: Berlin/Heidelberg, Germany, 2016; pp. 23–55. [Google Scholar]
  26. Bhatti, U.A.; Tang, H.; Wu, G.; Marjan, S.; Hussain, A. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence. Int. J. Intell. Syst. 2023, 2023, 8342104. [Google Scholar] [CrossRef]
  27. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International conference on machine learning. PMLR, New York, NY, USA, 19–24 June 2016; pp. 2014–2023. [Google Scholar]
  28. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 2016, 29, 3844–3852. [Google Scholar]
  29. Hechtlinger, Y.; Chakravarti, P.; Qin, J. A generalization of convolutional neural networks to graph-structured data. arXiv 2017, arXiv:1704.08165. [Google Scholar]
  30. Tomczyk, A.; Szczepaniak, P.S. Ear detection using convolutional neural network on graphs with filter rotation. Sensors 2019, 19, 5510. [Google Scholar] [CrossRef] [PubMed]
Figure 1. A toy example of the spatially-invariant (a) and the spatially-variant (b) graphs. In each panel, the left side shows the initial graph (above) and its adjacency matrix (below), while the left side corresponds to the graph with the shuffled nodes. For the spatially-invariant graphs (a), two matrices give a valid representation of the graph. For the spatially-variant graphs (b), a shuffled adjacency matrix cannot suffer as a valid representation.
Figure 1. A toy example of the spatially-invariant (a) and the spatially-variant (b) graphs. In each panel, the left side shows the initial graph (above) and its adjacency matrix (below), while the left side corresponds to the graph with the shuffled nodes. For the spatially-invariant graphs (a), two matrices give a valid representation of the graph. For the spatially-variant graphs (b), a shuffled adjacency matrix cannot suffer as a valid representation.
Mathematics 11 02515 g001
Figure 2. The probability density functions (PDFs) reflect the distributions of the link weights inside the active regions and in the rest of the graph (PDF, centered at 0). Panels (ad) correspond to the different values of n defining the distance between the mean values of these distributions. The mean value of the link weight inside the active regions is shown by the vertical dashed line.
Figure 2. The probability density functions (PDFs) reflect the distributions of the link weights inside the active regions and in the rest of the graph (PDF, centered at 0). Panels (ad) correspond to the different values of n defining the distance between the mean values of these distributions. The mean value of the link weight inside the active regions is shown by the vertical dashed line.
Mathematics 11 02515 g002
Figure 3. Examples of the adjacency matrices of the negative class. The pixel’s brightness reflects the link weight. Panels (ad) correspond to the different values of n defining the difference in the link weight between the active regions and the rest of the graph. Since in the negative class, we sampled the link weights from a single distribution for all regions, adjacency matrices demonstrate the homogeneous distribution of the weights that barely depends on n.
Figure 3. Examples of the adjacency matrices of the negative class. The pixel’s brightness reflects the link weight. Panels (ad) correspond to the different values of n defining the difference in the link weight between the active regions and the rest of the graph. Since in the negative class, we sampled the link weights from a single distribution for all regions, adjacency matrices demonstrate the homogeneous distribution of the weights that barely depends on n.
Mathematics 11 02515 g003
Figure 4. Examples of the adjacency matrices in the training set illustrate the case when the odd regions are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Figure 4. Examples of the adjacency matrices in the training set illustrate the case when the odd regions are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Mathematics 11 02515 g004
Figure 5. Examples of the adjacency matrices in the test set illustrate the case when the even regions are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Figure 5. Examples of the adjacency matrices in the test set illustrate the case when the even regions are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Mathematics 11 02515 g005
Figure 6. Examples of the adjacency matrices in the training set illustrate the case when regions 1–4 and 11, 12 are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Figure 6. Examples of the adjacency matrices in the training set illustrate the case when regions 1–4 and 11, 12 are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Mathematics 11 02515 g006
Figure 7. Examples of the adjacency matrices in the training set illustrate the case when regions 5–10 are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Figure 7. Examples of the adjacency matrices in the training set illustrate the case when regions 5–10 are active, i.e., link weight inside these regions is greater than in the rest of the graph.
Mathematics 11 02515 g007
Figure 8. The summary of the spatially-invariant and spatially-variant datasets on which both GNN and CNN are trained and tested. The sample size reflects the number of matrices in the train, validation, and test sets.
Figure 8. The summary of the spatially-invariant and spatially-variant datasets on which both GNN and CNN are trained and tested. The sample size reflects the number of matrices in the train, validation, and test sets.
Mathematics 11 02515 g008
Figure 9. Architecture of graph neural network.
Figure 9. Architecture of graph neural network.
Mathematics 11 02515 g009
Figure 10. Architecture of convolutional neural network.
Figure 10. Architecture of convolutional neural network.
Mathematics 11 02515 g010
Figure 11. Clustering and modularity when 6 (50%) and 9 (75%) out of 12 regions are active, i.e., link weight inside these regions exceeds one in the rest of the graph.
Figure 11. Clustering and modularity when 6 (50%) and 9 (75%) out of 12 regions are active, i.e., link weight inside these regions exceeds one in the rest of the graph.
Mathematics 11 02515 g011
Figure 12. Accuracy of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset (dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b) correspond to the training and test set.
Figure 12. Accuracy of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset (dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b) correspond to the training and test set.
Mathematics 11 02515 g012
Figure 13. Recall of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset (dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b) correspond to the training and test set.
Figure 13. Recall of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset (dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b) correspond to the training and test set.
Mathematics 11 02515 g013
Figure 14. Specificity of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset (dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b) correspond to the training and test set.
Figure 14. Specificity of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset (dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b) correspond to the training and test set.
Mathematics 11 02515 g014
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Boronina, A.; Maksimenko, V.; Hramov, A.E. Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data. Mathematics 2023, 11, 2515. https://doi.org/10.3390/math11112515

AMA Style

Boronina A, Maksimenko V, Hramov AE. Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data. Mathematics. 2023; 11(11):2515. https://doi.org/10.3390/math11112515

Chicago/Turabian Style

Boronina, Anna, Vladimir Maksimenko, and Alexander E. Hramov. 2023. "Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data" Mathematics 11, no. 11: 2515. https://doi.org/10.3390/math11112515

APA Style

Boronina, A., Maksimenko, V., & Hramov, A. E. (2023). Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data. Mathematics, 11(11), 2515. https://doi.org/10.3390/math11112515

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop