Violation of Neumann Problem’s Solvability Condition for Poisson Equation, Involved in the Non-Linear PDEs, Containing the Reaction-Diffusion-Convection-Type Equation, at Numerical Solution by Direct Method
Abstract
:1. Introduction
2. Problem Statement
2.1. Semiconductor Plasma Evolution Equations
2.2. The Problem of Finding the Semiconductor Characteristics’ Initial Distributions
2.3. The Charge Conservation Law and Its Correlation with the Neumann Problem’s Solvability
3. Numerical Method
3.1. Conservative Finite-Difference Scheme and Three-Stage Iteration Process for Its Implementation
3.2. Three-Stage IM for FDS Implementation
3.3. Numerical Methods for the Neumann Problem Solution
3.4. Numerical Method for Finding the Initial Distributions of the Mesh Functions
4. Computer Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, R.A. Semiconductors; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Markowich, P.A.; Ringhofer, C.A.; Schmeiser, C. Semiconductor Equations; Springer Science & Business Media: Wien, Austria, 2012. [Google Scholar]
- Jóźwikowska, A. Numerical solution of the non-linear Poisson equation for semiconductor devices by application of a diffusion-equation finite difference scheme. J. Appl. Phys. 2008, 104, 063715. [Google Scholar] [CrossRef]
- Jeffreys, H. Methods of Mathematical Physics, 3rd ed.; Cambridge Mathematical Library: Cambridge, UK, 1972. [Google Scholar]
- Atkinson, K.; Hansen, O.; Chien, D. A spectral method for elliptic equations: The Neumann problem. Adv. Comput. Math. 2011, 34, 295–317. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons. Inc.: New York, NY, USA, 1998. [Google Scholar]
- Hockney, R.W. A fast direct solution of Poisson’s equation using Fourier analysis. JACM 1965, 12, 95–113. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Dorr, F.W. The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev. 1970, 12, 248–263. [Google Scholar] [CrossRef]
- Temperton, C. Direct methods for the solution of the discrete Poisson equation: Some comparisons. J. Comput. Phys. 1979, 31, 1–20. [Google Scholar] [CrossRef]
- Buzbe, B.L.; Golub, G.H.; Nielson, C.W. On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 1970, 7, 627–656. [Google Scholar] [CrossRef]
- Wilhelmson, R.B.; Ericksen, J.H. Direct solutions for Poisson’s equation in three dimensions. J. Comput. Phys. 1977, 25, 319–331. [Google Scholar] [CrossRef]
- Schumann, U.; Sweet, R.A. Fast Fourier transforms for direct solution of Poisson’s equation with staggered boundary conditions. J. Comput. Phys. 1988, 75, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd ed.; DOVER Publications, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Lai, M.C.; Li, Z.; Lin, X. Fast solvers for 3D Poisson equations involving interfaces in a finite or the infinite domain. J. Comput. Appl. Math. 2006, 191, 106–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Sun, T. A spectral method for solving nonhomogeneous Neumann boundary value problems on quadrilaterals. Appl. Numer. Math. 2020, 157, 1–18. [Google Scholar] [CrossRef]
- Bergland, G.D. A guided tour of the fast Fourier transform. IEEE Spectr. 1969, 6, 41–52. [Google Scholar] [CrossRef]
- Shiferaw, A.; Mittal, R.C. An efficient direct method to solve the three dimensional Poisson’s equation. Am. J. Comput. Math. 2011, 1, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J. On the Numerical Integration of ∂^2u∂x^2+∂^2u∂y^2=∂u∂t by Implicit Methods. J. Soc. Ind. Appl. Math. 1955, 3, 42–65. [Google Scholar]
- Peaceman, D.W.; Rachford, H.H. The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 1955, 3, 28–41. [Google Scholar] [CrossRef]
- Douglas, J. Alternating direction methods for three space variables. Numer. Math. 1962, 4, 41–63. [Google Scholar] [CrossRef]
- Birkhoff, G.; Varga, R.S. Implicit alternating direction methods. Trans. Am. Math. Soc. 1959, 92, 13–24. [Google Scholar] [CrossRef]
- Wachspress, E.L.; Habetler, G.J. An alternating-direction-implicit iteration technique. J. Soc. Ind. Appl. Math. 1960, 8, 403–423. [Google Scholar] [CrossRef]
- Marchuk, G.I. Splitting and alternating direction methods. Handb. Numer. Anal. 1990, 1, 197–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 2011, 230, 8713–8728. [Google Scholar] [CrossRef]
- Dai, W.; Nassar, R. Compact ADI method for solving parabolic differential equations. Numer. Methods Part. Differ. Equ. 2002, 18, 129–142. [Google Scholar] [CrossRef]
- In’t Hout, K.J.; Welfert, B.D. Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms. Appl. Numer. Math. 2007, 57, 19–35. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Liu, G. High-order compact ADI methods for parabolic equations. Comput. Math. Appl. 2006, 52, 1343–1356. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, V.; Loginova, M.; Egorenkov, V. Conservative finite-difference scheme for computer simulation of contrast 3D spatial-temporal structures induced by a laser pulse in a semiconductor. Math. Methods Appl. Sci. 2020, 43, 4895–4917. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, V.; Loginova, M.; Egorenkov, V. Numerical methods for solving the 3D Neumann problem of laser-induced plasma evolution in a semiconductor: Direct and iteration methods. Comput. Math. Methods 2020, 3, e1092. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.M. Optical Bistability: Controlling Light with Light; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Gibbs, H.M.; McCall, S.L.; Venkatesan, T.N.C.; Gossard, A.C.; Passner, A.; Wiegmann, W. Optical bistability in semiconductors. Appl. Phys. Lett. 1979, 35, 451–453. [Google Scholar] [CrossRef]
- Smith, S.D. Optical bistability, photonic logic, and optical computation. Appl. Opt. 1986, 25, 1550–1564. [Google Scholar] [CrossRef]
- Chai, Z.; Hu, X.; Wang, F.; Niu, X.; Xie, J.; Gong, Q. Ultrafast All-Optical Switching. Adv. Opt. Mater. 2017, 5, 1600665. [Google Scholar] [CrossRef]
- Varentsova, S.A.; Trofimov, V.A. The effect of strong light field on the spectrum shift of a Hydrogen-like Atom. Comput. Math. Model. 1999, 10, 275–282. [Google Scholar] [CrossRef]
- Varentsova, S.A.; Loginova, M.M.; Trofimov, V.A. Mathematical modeling of optical bistability based on a light-induced electric field. Mosc. Univ. Comput. Math. Cybern. 2003, 1, 22–29. [Google Scholar]
- Borovskii, A.V.; Galkin, A.L. Laser Physics: X-ray Lasers, Ultrashort Pulses, Powerful Laser Systems; IzdAT: Moscow, Russia, 1996. [Google Scholar]
- Delone, N.B.; Krainov, V.P. Atoms in Strong Light Fields; Springer Series in Chemical Physics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Trofimov, V.A.; Loginova, M.M.; Egorenkov, V.A. A mathematical model of optical bistability and the multiplicity of its solutions. J. Comput. Appl. Math. 2019, 354, 663–681. [Google Scholar] [CrossRef]
- Trofimov, V.A.; Loginova, M.M.; Egorenkov, V.A. Conservative finite-difference scheme for the 2D problem of femtosecond laser pulse interaction with kink structure of high absorption in semiconductor. Int. J. Comput. Math. 2020, 97, 207–244. [Google Scholar] [CrossRef]
- Available online: https://www.intel.com/ (accessed on 6 March 2019).
- Keller, E.F.; Segel, L.A. Model for chemotaxis. J. Theor. Biol. 1971, 30, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.D. Mathematical Biology II: Saptial Models and Biomedical Application, 3rd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144–1149. [Google Scholar] [CrossRef] [Green Version]
- Rodenberger, D.C.; Heflin, J.R.; Garrto, A.F. Excited-state enhancement of optical nonlinearities in linear conjugated molecules. Nature 1992, 359, 309–311. [Google Scholar] [CrossRef]
- Li, C.; Deng, X.X.; Wang, Y.X. Non-linear absorption and refraction in multilevel organic molecular system. Chin. Phys. Lett. 2000, 1, 574–576. [Google Scholar] [CrossRef]
t = 0 | 0 | 9.08 × 102 | 3.73 × 10−17 | 3.73 × 10−17 | 4.23 × 10−8 | 4.23 × 10−8 | |
t = 5 | IM | 6.30 × 10−15 | 2.68 × 10−12 | 2.6810−12 | 2.68 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 9.40 × 10−9 | 1.10 × 10−6 | 2.27 × 10−6 | 1.17 × 10−6 | 3.94 × 10−6 | 2.78 × 10−6 | |
t = 10 | IM | 1.64 × 10−14 | 2.69 × 10−12 | 2.69 × 10−12 | 2.69 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 5.19 × 10−8 | 2.16 × 10−6 | 6.32 × 10−6 | 1.45 × 10−6 | 9.68 × 10−6 | 4.77 × 10−6 | |
t = 20 | IM | 3.77 × 10−14 | 2.71 × 10−12 | 2.71 × 10−12 | 2.72 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 3.31 × 10−7 | 4.09 × 10−6 | 1.67 × 10−5 | 7.83 × 10−7 | 2.34 × 10−5 | 7.47 × 10−6 | |
t = 40 | IM | 8.22 × 10−14 | 2.76 × 10−12 | 2.75 × 10−12 | 2.77 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 8.61 × 10−7 | 7.97 × 10−6 | 3.95 × 10−5 | 2.27 × 10−8 | 5.31 × 10−5 | 1.34 × 10−5 | |
t = 60 | IM | 1.28 × 10−13 | 2.81 × 10−12 | 2.80 × 10−12 | 2.82 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 1.35 × 10−6 | 1.18 × 10−5 | 6.32 × 10−5 | 5.06 × 10−7 | 8.36 × 10−5 | 2.05 × 10−5 | |
t = 80 | IM | 1.75 × 10−13 | 2.86 × 10−12 | 2.85 × 10−12 | 2.87 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 1.86 × 10−6 | 1.57 × 10−5 | 8.74 × 10−5 | 1.66 × 10−6 | 1.10 × 10−4 | 2.82 × 10−5 | |
t = 100 | IM | 2.22 × 10−13 | 2.91 × 10−12 | 2.89 × 10−12 | 2.92 × 10−12 | 4.23 × 10−8 | 4.23 × 10−8 |
DM | 2.36 × 10−6 | 1.95 × 10−5 | 1.10 × 10−4 | 3.82 × 10−6 | 1.40 × 10−4 | 3.66 × 10−5 |
t = 0 | t = 10 | t = 20 | t = 60 | t = 80 | t = 100 | ||
---|---|---|---|---|---|---|---|
IM | 4.23 × 10−8 | 4.23 × 10−8 | 4.23 × 10−8 | 4.23 × 10−8 | 4.23 × 10−8 | 4.23 × 10−8 | |
DM | 4.23 × 10−8 | 9.68 × 10−6 | 2.34 × 10−5 | 8.36 × 10−5 | 1.10 × 10−4 | 1.14 × 10−4 | |
IM | 4.38 × 10−11 | 4.38 × 10−11 | 4.38 × 10−11 | 4.39 × 10−11 | 4.40 × 10−11 | 4.40 × 10−11 | |
DM | 4.38 × 10−11 | 9.72 × 10−6 | 2.35 × 10−5 | 8.36 × 10−5 | 1.10 × 10−4 | 1.14 × 10−4 |
t = 5 | 2.27 × 10−6 | 1.76 × 10−7 | 2.68 × 10−12 |
t = 10 | 6.32 × 10−6 | 4.8 × 10−7 | 2.69 × 10−12 |
t = 20 | 1.67 × 10−5 | 1.33 × 10−6 | 2.72 × 10−12 |
t = 40 | 3.95 × 10−5 | 3.27 × 10−6 | 2.77 × 10−12 |
t = 60 | 6.32 × 10−5 | 3.27 × 10−6 | 2.82 × 10−12 |
t = 80 | 8.74 × 10−5 | 7.43 × 10−6 | 2.87 × 10−12 |
t = 100 | 1.10 × 10−4 | 9.54 × 10−6 | 2.92 × 10−12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trofimov, V.; Loginova, M.; Egorenkov, V.; Yang, Y.; Yan, Z. Violation of Neumann Problem’s Solvability Condition for Poisson Equation, Involved in the Non-Linear PDEs, Containing the Reaction-Diffusion-Convection-Type Equation, at Numerical Solution by Direct Method. Mathematics 2023, 11, 2567. https://doi.org/10.3390/math11112567
Trofimov V, Loginova M, Egorenkov V, Yang Y, Yan Z. Violation of Neumann Problem’s Solvability Condition for Poisson Equation, Involved in the Non-Linear PDEs, Containing the Reaction-Diffusion-Convection-Type Equation, at Numerical Solution by Direct Method. Mathematics. 2023; 11(11):2567. https://doi.org/10.3390/math11112567
Chicago/Turabian StyleTrofimov, Vyacheslav, Maria Loginova, Vladimir Egorenkov, Yongqiang Yang, and Zhongwei Yan. 2023. "Violation of Neumann Problem’s Solvability Condition for Poisson Equation, Involved in the Non-Linear PDEs, Containing the Reaction-Diffusion-Convection-Type Equation, at Numerical Solution by Direct Method" Mathematics 11, no. 11: 2567. https://doi.org/10.3390/math11112567
APA StyleTrofimov, V., Loginova, M., Egorenkov, V., Yang, Y., & Yan, Z. (2023). Violation of Neumann Problem’s Solvability Condition for Poisson Equation, Involved in the Non-Linear PDEs, Containing the Reaction-Diffusion-Convection-Type Equation, at Numerical Solution by Direct Method. Mathematics, 11(11), 2567. https://doi.org/10.3390/math11112567