An Adaptive Controller Design for Nonlinear Active Air Suspension Systems with Uncertainties
Abstract
:1. Introduction
2. Problem Formulation and Controller Design
3. Simulation Verification
3.1. Sinusoidal Road Input
3.2. Random Road Input
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Sun, W.; Du, H. Integrated Motion Control Scheme for Four-Wheel-Independent Vehicles Considering Critical Conditions. IEEE Trans. Veh. Technol. 2019, 68, 7488–7497. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Sun, S.; Li, S.; Yang, J.; Yan, Z. Design of Constrained Robust Controller for Active Suspension of In-Wheel-Drive Electric Vehicles. Mathematics 2021, 9, 249. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Yang, J. Development of Robust Guaranteed Cost Mixed Control System for Active Suspension of In-Wheel-Drive Electric Vehicles. Math. Probl. Eng. 2022, 2022, 4628539. [Google Scholar] [CrossRef]
- Fu, Z.J.; Dong, X.Y. H infinity optimal control of vehicle active suspension systems in two time scales. Automatika 2021, 62, 284–292. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, W.; Feng, Z. Vehicle yaw stability control via H∞ gain scheduling. Mech. Syst. Signal Process. 2018, 106, 62–75. [Google Scholar] [CrossRef]
- Veselov, G.; Sinicyn, A. Synthesis of sliding control system for automotive suspension under kinematic constraints. J. Vibroeng. 2021, 23, 1446–1455. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, X. Observer-based event-triggered control and application in active suspension vehicle systems. Syst. Sci. Control Eng. 2022, 10, 282–288. [Google Scholar] [CrossRef]
- Unguritu, M.G.; Nichitelea, T.C.; Selisteanu, D. Design and Performance Assessment of Adaptive Harmonic Control for a Half-Car Active Suspension System. Complexity 2022, 2022, 3190520. [Google Scholar] [CrossRef]
- Wu, K.; Ren, C. Control and Stability Analysis of Double Time-Delay Active Suspension Based on Particle Swarm Optimization. Shock Vib. 2020, 2020, 8873701. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, W.; Jing, H. Nonlinear Robust Control of Antilock Braking Systems Assisted by Active Suspensions for Automobile. IEEE Trans. Control Syst. Technol. 2019, 27, 1352–1359. [Google Scholar] [CrossRef]
- Pan, F.; Luo, J.; Wu, W. Active Disturbance Rejection Control of Voice Coil Motor Active Suspension Based on Displacement Feedback. Actuators 2022, 11, 351. [Google Scholar] [CrossRef]
- Fu, B.; Giossi, R.L.; Persson, R.; Stichel, S.; Bruni, S.; Goodall, R. Active suspension in railway vehicles: A literature survey. Railw. Eng. Sci. 2020, 28, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Xu, G.; Zeng, W.; Gao, F.; Chong, K. Lateral Stability of a Mobile Robot Utilizing an Active Adjustable Suspension. Appl. Sci. 2019, 9, 4410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, W.; Liu, Z.; Zeng, M. Comfort braking control for brake-by-wire vehicles. Mech. Syst. Signal Process. 2019, 133, 106255. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M. Integrated Adaptive Steering Stability Control for Ground Vehicle with Actuator Saturations. Appl. Sci. 2022, 12, 8502. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, B.; Sun, J. Research on the Design Method of a Bionic Suspension Workpiece Based on the Wing Structure of an Albatross. Appl. Bionics Biomech. 2019, 2019, 2539410. [Google Scholar] [CrossRef] [Green Version]
- Rui, B. Nonlinear adaptive sliding-mode control of the electronically controlled air suspension system. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419881527. [Google Scholar] [CrossRef]
- Ha, D.V.; Tan, V.V.; Niem, V.T.; Sename, O. Evaluation of Dynamic Load Reduction for a Tractor Semi-Trailer Using the Air Suspension System at all Axles of the Semi-Trailer. Actuators 2022, 11, 12. [Google Scholar] [CrossRef]
- Chen, B.; Dong, G.; Shi, Y.; Tan, X.Y. Research on Damping Mode of Passenger Vehicle Air Suspension System. In Proceedings of the 3rd International Workshop on Renewable Energy and Development (IWRED), Guangzhou, China, 8–10 March 2019; Volume 267. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Li, Z.; Geng, G.; Liao, Y.G. H-infinity Robust Control of Interconnected Air Suspension Based on Mode Switching. IEEE Access 2022, 10, 62377–62390. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Zhang, X.; Jiang, H.; Xue, H. Interconnected State Control Method and Simulations of Four-corner Interconnected Air Suspension. In Proceedings of the 6th International Conference on Mechanical, Materials and Manufacturing (ICMMM), Boston, MA, USA, 12–14 October 2019; Volume 689. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, X.; Wang, G.; Fan, Y. Adaptive Backstepping Sliding Mode Tracking Control for Underactuated Unmanned Surface Vehicle With Disturbances and Input Saturation. IEEE Access 2021, 9, 1304–1312. [Google Scholar] [CrossRef]
- Qian, F.; Cai, J.; Wang, B.; Yu, R. Adaptive Backstepping Control for a Class of Nonlinear Systems with Unknown Time Delay. IEEE Access 2020, 8, 229–236. [Google Scholar] [CrossRef]
- Jeon, B.J.; Seo, M.G.; Shin, H.S.; Tsourdos, A. Closed-loop Analysis with Incremental Backstepping Controller considering Measurement Bias. IFAC Pap. 2019, 52, 405–410. [Google Scholar] [CrossRef]
- Brummelhuis, K.; Saikumar, N.; Van Wingerden, J.W.; HosseinNia, S.H. Adaptive Feedforward Control For Reset Feedback Control Systems—Application in Precision Motion Control. In Proceedings of the 2021 European Control Conference (ECC), Delft, The Netherlands, 29 Jun–2 July 2021; pp. 2450–2457. [Google Scholar]
- Alwan, N.A.S.; Hussain, Z.M. Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder. Sensors 2022, 22, 5935. [Google Scholar] [CrossRef]
- Quang, L.H.; Putov, V.V.; Sheludko, V.N. Adaptive robust control of a multi-degree-of-freedom mechanical plant with resilient properties. In Proceedings of the 14th International Symposium on Intelligent Systems, ELECTR NETWORK, Montreal, QC, Canada, 14–16 December 2020; Zelinka, I., Pereira, F., Das, S., Ilin, A., Diveev, A., Nikulchev, E., Eds.; 2021; Volume 186, pp. 611–619. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, J. Heavy Vehicle Air Suspension Control Considering Ride Comfort and Height Regulation. Control Theory Appl. 2022, 39, 1002–1010. [Google Scholar]
Parament | Value | Parament | Value |
---|---|---|---|
1535 kg | 400 kg | ||
10,000 Ns/m | 650,000 Ns/m | ||
11,086 Ns/m | K | 1.4 | |
T | 293.15 k | R | 287.1 |
Parament | Value | Parament | Value |
---|---|---|---|
100 | 100 | ||
100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, Y.; Hu, C. An Adaptive Controller Design for Nonlinear Active Air Suspension Systems with Uncertainties. Mathematics 2023, 11, 2626. https://doi.org/10.3390/math11122626
Zhang J, Yang Y, Hu C. An Adaptive Controller Design for Nonlinear Active Air Suspension Systems with Uncertainties. Mathematics. 2023; 11(12):2626. https://doi.org/10.3390/math11122626
Chicago/Turabian StyleZhang, Jinhua, Yi Yang, and Cheng Hu. 2023. "An Adaptive Controller Design for Nonlinear Active Air Suspension Systems with Uncertainties" Mathematics 11, no. 12: 2626. https://doi.org/10.3390/math11122626
APA StyleZhang, J., Yang, Y., & Hu, C. (2023). An Adaptive Controller Design for Nonlinear Active Air Suspension Systems with Uncertainties. Mathematics, 11(12), 2626. https://doi.org/10.3390/math11122626