Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orientation Distribution Function
2.2. Application of Orientation Distribution Function
2.3. Topological Approach
Algorithm 1: B0 and B1 matrixes construction |
Input: x, vector of dimension N Output: B0 and B1 matrixes for each xi for j in range [i, N] d(i,j) = distance(x(i), x(j)) by Equation (28) end for end for dUnique ← unique(d(i,j)) V, E ← null B0, B1 ← null k = 0 for i in range of dUnique j = findRows(d == dUnique(i)) V += number(j) E += findNumber(d == dUnique(i)) B0(j,i) ← dUnique(i) F = 2 − V − E if F > 0 k += 1 cycle = findCycle(B0 == dUnique(i)) D = findOverLap(cycle) by Equation (34) B1(k,:) ← D end if end for |
2.4. Research Design
2.5. Numerical Example
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, E.; Omairey, S.; Zysset, P. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model. J. Mech. Behav. Biomed. Mater. 2023, 139, 105660. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.; Zysset, P. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius. Biomech. Model Mechanobiol. 2023, 22, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Dalbosco, M.; Carniel, T.A.; Fancello, E.A.; Holzapfel, G.A. Multiscale numerical analyses of arterial tissue with embedded elements in the finite strain regime. Comput. Methods Appl. Mech. Eng. 2021, 381, 113844. [Google Scholar] [CrossRef]
- Bachmann, S.; Pahr, D.H.; Synek, A. A density-dependent target stimulus for inverse bone (re)modeling with homogenized finite element models. Ann. Biomed. Eng. 2023, 51, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Nagl, K.; Reisinger, A.; Pahr, D.H. The biomechanical behavior of 3D printed human femoral bones based on generic and patient-specific geometries. 3D Print. Med. 2022, 8, 35. [Google Scholar] [CrossRef]
- Silva-Henao, J.D.; Synek, A.; Pahr, D.H.; Reisinger, A.G. Selection of animal bone surrogate samples for orthopaedic screw testing based on human radius CT-derived bone morphology. Med. Eng. Phys. 2022, 103, 103786. [Google Scholar] [CrossRef]
- Sadyrin, E.V. Modeling the mechanism of reducing enamel mineral density in the vicinity of the fisure tip. Russ. J. Biomech. 2023, 27, 31–39. [Google Scholar]
- Maslov, L.B.; Dmitryuk, A.Y.; Zhmaylo, M.A.; Kovalenko, A.N. Study of the strength of a hip endoprosthesis made of polymeric material. Russ. J. Biomech. 2022, 26, 19–33. [Google Scholar]
- Casari, D.; Michler, J.; Zysset, P.; Schwiedrzik, J. Microtensile properties and failure mechanisms of cortical bone at the lamellar level. Acta Biomater. 2021, 120, 135–145. [Google Scholar] [CrossRef]
- Keaveny, T.M.; Clarke, B.L.; Cosman, F.; Orwoll, E.S.; Siris, E.S.; Khosla, S.; Bouxsein, M.L. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos. Int. 2020, 31, 1025–1048. [Google Scholar] [CrossRef]
- Dall’Ara, E.; Tozzi, G. Digital volume correlation for the characterization of musculoskeletal tissues: Current challenges and future developments. Front. Bioeng. Biotechnol. 2022, 10, 1010056. [Google Scholar] [CrossRef] [PubMed]
- Fleps, I.; Bahaloo, H.; Zysset, P.K.; Ferguson, S.J.; Palsson, H.; Helgason, B. Empirical relationships between bone density and ultimate strength: A literature review. J. Mech. Behav. Biomed. Mater. 2020, 110, 103866. [Google Scholar] [CrossRef] [PubMed]
- Varga, P.; Willie, B.M.; Stephan, C.; Kozloff, K.M.; Zysset, P.K. Finite element analysis of bone strength in osteogenesis imperfect. Bone 2020, 133, 115250. [Google Scholar] [CrossRef]
- Kichenko, A.A. Cancellous bone tissue remodelling: Mathematical modeling. Russ. J. Biomech. 2019, 23, 284–304. [Google Scholar]
- Nie, C.-X. Topological similarity of time-dependent objects. Nonlinear Dyn. Vol. 2023, 111, 481–492. [Google Scholar] [CrossRef]
- Offroy, M.; Duponchel, L. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal. Chim. Acta 2016, 910, 1–11. [Google Scholar] [CrossRef]
- Skaf, Y.; Laubenbacher, R. Topological data analysis in biomedicine: A review. J. Biomed. Inform. 2022, 130, 104082. [Google Scholar] [CrossRef]
- Vilenkin, N.J. Special functions and the theory of group representations. Transl. Math. Monogr. 1968, 22, 613. [Google Scholar]
- Bunge, G. Texture Analysis in Material Science: Mathematical Methods, 1st ed.; Butterworth & Co: London, UK, 1986; p. 595. [Google Scholar]
- Jones, M.N. Spherical Harmonics and Tensors for Classical Field Theory, 1st ed.; Research Studies Press: New York, NY, USA, 1985; p. 244. [Google Scholar]
- Kanatani, K. Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 1984, 2, 149–164. [Google Scholar]
- Harrigan, T.P.; Mann, R.W. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 1984, 19, 761–767. [Google Scholar] [CrossRef]
- Tozeren, A.; Skalak, R. Does fabric tensor exist for a fabric? J. Mater. Sci. 1989, 24, 1700–1706. [Google Scholar] [CrossRef]
- Cowin, S.C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 1985, 4, 137–147. [Google Scholar] [CrossRef]
- Semenova, E.; Gerasimov, O.; Koroleva, E.; Ahmetov, N.; Baltina, T.; Sachenkov, O. Automatic processing and analysis of the quality healing of derma injury. Adv. Intell. Syst. Comput. 2019, 831, 107–113. [Google Scholar]
- Baidamshina, D.R.; Koroleva, V.A.; Trizna, E.Y.; Pankova, S.M.; Agafonova, M.N.; Chirkova, M.N.; Vasileva, O.S.; Akhmetov, N.; Shubina, V.V.; Porfiryev, A.G.; et al. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int. J. Biol. Macromol. 2020, 164, 4205–4217. [Google Scholar] [CrossRef] [PubMed]
- Cowin, S.C.; Mehrabadi, M.M. Anisotropic symmetries in linear elasticity. Appl. Mech. Rev. 1995, 48, 247–285. [Google Scholar] [CrossRef]
- Aktas, M.E.; Akbas, E.; Fatmaoui, A.E. Persistence homology of networks: Methods and applications. Appl. Netw. Sci. 2019, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Amezquita, E.J.; Quigley, M.Y.; Ophelders, T.; Munch, E.; Chitwood, D.H. The shape of things to come: Topological data analysis and biology, from molecules to organisms. Dev. Dyn. 2020, 249, 816–833. [Google Scholar] [CrossRef]
- Hylton, A.; Henselman-Petrusek, G.; Sang, J.; Short, R. Tuning the performance of a computational persistent homology package. Softw. Pract. Exp. 2019, 49, 885–905. [Google Scholar] [CrossRef]
- Attali, D.; Lieutier, A.; Salinas, D. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. In Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, SoCG ’11, Paris, France, 13–15 June 2011; pp. 501–509. [Google Scholar]
- Preti, G.; De Francisci Morales, G.; Bonchi, F. STruD: Truss decomposition of simplicial complexes. In Proceedings of the Web Conference 2021 (WWW ’21), Ljubljana, Slovenia, 19–23 April 2021; pp. 3408–3418. [Google Scholar]
- Basset, A.B. Classification of quartic curves. Nature 1902, 67, 80. [Google Scholar] [CrossRef] [Green Version]
- Bastien, G.; Rogalski, M. The periodic orbits of a dynamical system associated with a family of QRT-maps. Qual. Theory Dyn. Syst. 2020, 19, 57. [Google Scholar] [CrossRef]
- Pettigrew, J.; Roberts, J.A.G. Characterizing singular curves in parametrized families of biquadratics. J. Phys. A Math. Theor. 2008, 41, 115203. [Google Scholar] [CrossRef]
- Yaikova, V.V.; Gerasimov, O.V.; Fedyanin, A.O.; Zaytsev, M.A.; Baltin, M.E.; Baltina, T.V. and Sachenkov, O.A. Automation of Bone Tissue Histology. Front. Phys. 2019, 7, 91. [Google Scholar] [CrossRef]
Regression Parameter | Value |
---|---|
p1 | 5.2005 |
p0 | 0.6539 |
r2 | 0.104 |
p-value | 1.37 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnova, V.; Semenova, E.; Prunov, V.; Zamaliev, R.; Sachenkov, O. Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function. Mathematics 2023, 11, 2639. https://doi.org/10.3390/math11122639
Smirnova V, Semenova E, Prunov V, Zamaliev R, Sachenkov O. Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function. Mathematics. 2023; 11(12):2639. https://doi.org/10.3390/math11122639
Chicago/Turabian StyleSmirnova, Victoriya, Elena Semenova, Valeriy Prunov, Ruslan Zamaliev, and Oskar Sachenkov. 2023. "Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function" Mathematics 11, no. 12: 2639. https://doi.org/10.3390/math11122639
APA StyleSmirnova, V., Semenova, E., Prunov, V., Zamaliev, R., & Sachenkov, O. (2023). Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function. Mathematics, 11(12), 2639. https://doi.org/10.3390/math11122639