Sharp Stability for LSI
Abstract
:1. Introduction
“a stability on the Gaussian logarithmic Sobolev inequality is shown in [13], although the distance is measured only by an norm. Whether a stronger estimate can be obtained in the limiting case , eventually under some restriction, is therefore so far an open question.”
2. Proofs
3. Conclusions
- A necessary and sufficient condition to have convergence via the logarithmic Sobolev deficit is identified in 1, Theorem 1.
- A sharp -estimate is obtained in 2, Theorem 1.
- An explicit example is constructed in 3, Theorem 1, proving that, in general, there is blow-up in ; in particular, one may not preclude the in from appearing in Theorem 1.
- An explicit example is constructed in Theorem 2, proving that the stability of Dolbeault, Esteban, Figalli, Frank, and Loss [11] is sharp.
Funding
Acknowledgments
Conflicts of Interest
References
- Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 1959, 2, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Federbush, P. A partially alternative derivation of a result of Nelson. J. Phys. 1969, 10, 50–52. [Google Scholar]
- Gross, L. Logarithmic sobolev inequalities. Am. J. Math. 1975, 97, 1061–1083. [Google Scholar] [CrossRef]
- Cordero-Erausquin, D. Some applications of mass transport to Gaussian-type inequalities. Arch. Ration. Mech. Anal. 2002, 161, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Royer, G. An initiation to Logarithmic Sobolev Inequalities. Translated from the 1999 French original by Donald Babbitt; American Mathematical Society: Providence, RI, USA, 2007; Volume 14. [Google Scholar]
- Perelman, G. The entropy formula for the ricci flow and its geometric applications. arXiv 2002, arXiv:math/0211159v1. [Google Scholar]
- Carlen, E.A. Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 1991, 101, 194–211. [Google Scholar] [CrossRef] [Green Version]
- Hirschman, I., Jr. A note on entropy. Am. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Indrei, E.; Marcon, D. A quantitative log-Sobolev inequality for a two parameter family of functions. Int. Math. Res. Not. IMRN 2014, 20, 5563–5580. [Google Scholar] [CrossRef] [Green Version]
- Dolbeault, J.; Esteban, M.J.; Figalli, A.; Frank, R.L.; Loss, M. Sharp stability for sobolev and log-sobolev inequalities, with optimal dimensional dependence. arXiv 2022, arXiv:2209.08651. [Google Scholar]
- Brigati, G.; Dolbeault, J.; Simonov, N. On gaussian interpolation inequalities. arXiv 2023, arXiv:2302.03926. [Google Scholar]
- Indrei, E.; Kim, D. Deficit estimates for the logarithmic sobolev inequality. Differ. Integral Equ. 2021, 34, 437–466. [Google Scholar] [CrossRef]
- Fathi, M.; Indrei, E.; Ledoux, M. Quantitative logarithmic Sobolev inequalities and stability estimates. Discret. Contin. Dyn. Syst. 2016, 36, 6835–6853. [Google Scholar] [CrossRef] [Green Version]
- Feo, F.; Indrei, E.; Posteraro, M.R.; Roberto, C. Some remarks on the stability of the log-Sobolev inequality for the Gaussian measure. Potential Anal. 2017, 47, 37–52. [Google Scholar] [CrossRef]
- Cazacu, C.; Flynn, J.; Nguyen, L.; Lu, G. Caffarelli-kohn-nirenberg identities, inequalities and their stabilities. arXiv 2022, arXiv:2211.14622. [Google Scholar]
- Gozlan, N. The deficit in the Gaussian log-Sobolev inequality and inverse Santaló inequalities. Int. Math. Res. Not. IMRN 2022, 2022, 13396–13446. [Google Scholar] [CrossRef]
- Bez, N.; Nakamura, S.; Tsuji, H. Stability of hypercontractivity, the logarithmic sobolev inequality, and talagrand’s cost inequality. arXiv 2022, arXiv:2201.12478. [Google Scholar]
- Dolbeault, J.; Esteban, J. Hardy-Littlewood-Sobolev and related inequalities: Stability. In The Physics and Mathematics of Elliott Lieb—The 90th Anniversary; EMS Press: Berlin, Germany, 2022; Volume I, pp. 247–268. [Google Scholar]
- Indrei, E. A sharp lower bound on the polygonal isoperimetric deficit. Proc. Am. Math. Soc. 2016, 144, 3115–3122. [Google Scholar] [CrossRef] [Green Version]
- Indrei, E. A weighted relative isoperimetric inequality in convex cones. Methods Appl. Anal. 2021, 28, 001–014. [Google Scholar] [CrossRef]
- Eldan, R.; Lehec, J.; Shenfeld, Y. Stability of the logarithmic Sobolev inequality via the Föllmer process. Ann. Inst. Henri Poincaré Probab. Stat. 2020, 56, 2253–2269. [Google Scholar] [CrossRef]
- Indrei, E. On the equilibrium shape of a crystal. arXiv 2021, arXiv:2008.0223. [Google Scholar]
- Bobkov, S.G.; Gozlan, N.; Roberto, C.; Samson, P.-M. Bounds on the defcit in the logarithmic sobolev inequality. J. Funct. Anal. 2014, 267, 4110–4138. [Google Scholar] [CrossRef]
- Kim, D. Instability results for the logarithmic Sobolev inequality and its application to related inequalities. Discret. Contin. Dyn. Syst. 2022, 42, 4297–4320. [Google Scholar] [CrossRef]
- Mai, C.H.; Ohta, S.-I. Quantitative estimates for the Bakry-Ledoux isoperimetric inequality. Comment. Math. Helv. 2021, 96, 693–739. [Google Scholar] [CrossRef]
- Mai, C.H.; Ohta, S.-I. Quantitative estimates for the bakry–ledoux isoperimetric inequality II. Bull. Lond. Math. Soc. 2023, 55, 224–233. [Google Scholar] [CrossRef]
- Ohta, S.-I.; Takatsu, A. Equality in the logarithmic Sobolev inequality. Manuscr. Math. 2020, 162, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Bonforte, M.; Dolbeault, J.; Nazaret, B.; Simonov, N. Stability in gagliardo-nirenberg-sobolev inequalities: Flows, regularity and the entropy method. arXiv 2020, arXiv:2007.03674. [Google Scholar]
- Bolley, F.; Gentil, I.; Guillin, A. Dimensional improvements of the logarithmic sobolev, talagrand and brascamp-lieb inequalities. Ann. Probab. 2018, 46, 261–301. [Google Scholar] [CrossRef] [Green Version]
- Balogh, Z.M.; Don, S.; Kristaly, A. Weighted gagliardo-nirenberg inequalities via optimal transport theory and applications. arXiv 2022, arXiv:2205.09051. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indrei, E. Sharp Stability for LSI. Mathematics 2023, 11, 2670. https://doi.org/10.3390/math11122670
Indrei E. Sharp Stability for LSI. Mathematics. 2023; 11(12):2670. https://doi.org/10.3390/math11122670
Chicago/Turabian StyleIndrei, Emanuel. 2023. "Sharp Stability for LSI" Mathematics 11, no. 12: 2670. https://doi.org/10.3390/math11122670
APA StyleIndrei, E. (2023). Sharp Stability for LSI. Mathematics, 11(12), 2670. https://doi.org/10.3390/math11122670