Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs
Abstract
:1. Introduction
2. Notation Description
3. Problem Description
4. Problem Solving
Algorithm 1: The algorithm of |
|
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agnetis, A.; Pacciarelli, D.; Pacifici, A. Multi-agent single machine scheduling. Ann. Oper. Res. 2007, 150, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Tuong, N.H.; Soukhal, A.; Billaut, J.-C. Single-machine multi-agent scheduling problems with a global objective function. J. Sched. 2012, 15, 311–321. [Google Scholar]
- Gu, M.; Gu, J.; Lu, X. An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines. J. Sched. 2018, 21, 483–492. [Google Scholar] [CrossRef]
- He, G.; Wu, J.; Lin, H. Two-agent bounded parallel-batching scheduling for minimizing maximum cost and makespan. Discret. Optim. 2022, 45, 100698. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Y.; Yin, Y.; Cheng, T.C.E. Multi-agent scheduling problems under multitasking. Int. J. Prod. Res. 2021, 59, 3633–3663. [Google Scholar] [CrossRef]
- Wan, L.; Mei, J.; Du, J. Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs. Eur. J. Oper. Res. 2021, 290, 26–35. [Google Scholar] [CrossRef]
- Shabtay, D.; Mosheiov, G.; Oron, D. Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work. Eur. J. Oper. Res. 2022, 303, 66–77. [Google Scholar] [CrossRef]
- Falq, A.E.; Fouilhoux, P.; Kedad-Sidhoum, S. Dominance inequalities for scheduling around an unrestrictive common due date. Eur. J. Oper. Res. 2022, 296, 453–464. [Google Scholar] [CrossRef]
- Wu, W.; Lv, D.-Y.; Wang, J.-B. Two due-date assignment scheduling with location-dependent weights and a deteriorating maintenance activity. Systems 2023, 11, 150. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X. Group technology scheduling with due-date assignment and controllable processing times. Processes 2023, 11, 1271. [Google Scholar] [CrossRef]
- Mosheiov, G.; Oron, D.; Shabtay, D. On the tractability of hard scheduling problems with generalized due-dates with respect to the number of different due-dates. J. Sched. 2022, 25, 577–587. [Google Scholar] [CrossRef]
- Hadayat, N.P.A.; Cakravastia, A.; Aribowo, W.; Halim, A.H. A single-stage batch scheduling model with m heterogeneous batch processors producing multiple items parts demanded at different due dates. Int. J. Ind. Syst. Eng. 2022, 41, 254–275. [Google Scholar] [CrossRef]
- Liu, W.; Hu, X.; Wang, X. Single machine scheduling with slack due dates assignment. Eng. Optim. 2016, 49, 709–717. [Google Scholar] [CrossRef]
- Liu, W.W.; Jiang, C. Due-date assignment scheduling involving job-dependent learning effects and convex resource allocation. Eng. Optim. 2020, 52, 74–89. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, D.J.; Wu, C.C.; Cheng, T.C.E. CON/SLK due date assignment and scheduling on a single machine with two agents. Nav. Res. Logist. 2016, 63, 416–429. [Google Scholar] [CrossRef]
- Wang, D.J.; Yin, Y.Q.; Cheng, S.R.; Cheng, T.C.E.; Wu, C.C. Due date assignment and scheduling on a single machine with two competing agents. Int. J. Prod. Res. 2016, 54, 1152–1169. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Y.; Qiu, H.; Yin, Y.; Cheng, T.C.E. Two-agent scheduling with linear resource-dependent processing times. Nav. Res. Logist. 2020, 67, 573–591. [Google Scholar] [CrossRef]
- Luo, C. A two-agent slack due-date assignment single machine scheduling problem with position-dependent workload and resource constraint. J. Chongqing Norm. Univ. (Nat. Sci.) 2022, 39, 1–8. (In Chinese) [Google Scholar]
- Wu, C.-C.; Wu, W.-H.; Wu, W.-H.; Hsu, P.-H.; Yin, Y.; Xu, J. A single-machine scheduling with a truncated linear deterioration and ready times. Inf. Sci. 2014, 256, 109–125. [Google Scholar] [CrossRef]
- Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin, Germany, 2020. [Google Scholar]
- Zhang, X.; Liu, S.-C.; Lin, W.-C.; Wu, C.-C. Parallel-machine scheduling with linear deteriorating jobs and preventive maintenance activities under a potential machine disruption. Comput. Ind. Eng. 2020, 145, 106482. [Google Scholar] [CrossRef]
- Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
- Yin, Y.; Cheng, T.C.E.; Wan, L.; Wu, C.C.; Liu, J. Two-agent single-machine scheduling with deteriorating jobs. Comput. Ind. Eng. 2015, 81, 177–185. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, C.M.; Wu, Y.B. Single machine two-agent scheduling with deteriorating jobs. Asia-Pac. J. Oper. Res. 2016, 33, 1650034. [Google Scholar] [CrossRef]
- Li, D.; Li, G. Cheng, F. Two-agent single machine scheduling with deteriorating jobs and rejection. Math. Probl. Eng. 2022, 2022, 3565133. [Google Scholar] [CrossRef]
- Mor, B.; Mosheiov, G. A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance. J. Comb. Optim. 2017, 33, 1454–1468. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N. Single-machine scheduling with deteriorating effects and machine maintenance. Int. J. Prod. Res. 2019, 57, 3186–3199. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bai, D.; Zhang, X.; Cheng, S.-R.; Lin, J.-C.; Wu, Z.-L.; Lin, W.-C. A robust customer order scheduling problem along with scenario-dependent component processing times and due dates. J. Manuf. Syst. 2021, 58, 291–305. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bai, D.; Chen, J.-H.; Lin, W.-C.; Xing, L.; Lin, J.-C.; Cheng, S.-R. Several variants of simulated annealing hyper-heuristic for a single-machine scheduling with two-scenario-based dependent processing times. Swarm Evol. Comput. 2021, 60, 100765. [Google Scholar] [CrossRef]
Research Contents | Algorithm Complexity | Research Conte References |
---|---|---|
Yin et al. [15] | ||
Yin et al. [15] | ||
Wang et al. [16] | ||
Wang et al. [16] | ||
Wang et al. [16] | ||
Yin et al. [23] | ||
NP-hard | Wang et al. [24] | |
() | Luo [18] | |
() | This paper | |
Notation | Significance |
---|---|
slack due date | |
deteriorating jobs | |
(resp. ) | agent (agent ) |
L | set of agents |
(resp. ) | number of jobs of (number of jobs of ) |
set of jobs of two agents | |
(resp. ) | job of agent , (job of agent , ) |
at position x (, ) | |
at position y (, ) | |
() | processing time of (processing time of ) |
() | workload of (workload of ) |
() | resource of (resource of ) |
upper bound of resource allocation of | |
upper bound of resource allocation of | |
deterioration rate | |
() | starting time of (starting time of ) |
common decision variable | |
due date of | |
completion time | |
amount of earliness | |
amount of tardiness | |
job scheduling |
() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 82 | 55 | 81 | 4 | 66 | 83 | 77 |
2 | 91 | 96 | 15 | 85 | 18 | 70 | 80 |
3 | 13 | 97 | 43 | 94 | 71 | 32 | 19 |
4 | 92 | 16 | 92 | 68 | 4 | 96 | 49 |
5 | 64 | 98 | 80 | 76 | 28 | 4 | 45 |
6 | 10 | 96 | 96 | 75 | 5 | 44 | 65 |
7 | 28 | 49 | 66 | 40 | 1 | 39 | 71 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 169.8707 | 90.2493 | 81.0000 | 7.5595 | 33.9711 | 27.4426 | 18.0992 |
2 | 182.0833 | 130.8327 | 26.3162 | 57.9963 | 14.2866 | 24.4966 | 18.5664 |
3 | 49.7590 | 131.7397 | 53.1056 | 62.0212 | 35.6659 | 14.5370 | 7.1204 |
4 | 183.4148 | 39.6231 | 88.1766 | 49.9797 | 5.2415 | 30.2381 | 13.3905 |
5 | 144.0000 | 132.6436 | 80.3320 | 53.8266 | 19.1802 | 3.6342 | 12.6515 |
6 | 41.7743 | 130.8327 | 90.7143 | 53.3534 | 6.0822 | 17.9753 | 16.1662 |
7 | 82.9879 | 83.5602 | 70.6628 | 35.0882 | 2.0801 | 16.5863 | 17.1464 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 117.7817 | 62.5754 | 56.1623 | 5.2415 | 23.5543 | 19.0277 |
2 | 126.2495 | 90.7143 | 18.2466 | 40.2124 | 9.9058 | 16.9850 |
3 | 34.5009 | 91.3432 | 36.8214 | 43.0031 | 24.7293 | 10.0794 |
4 | 127.1727 | 27.4731 | 61.1383 | 34.6540 | 3.6342 | 20.9659 |
5 | 99.8440 | 91.9699 | 55.6991 | 37.3213 | 13.2988 | 2.5198 |
6 | 28.9647 | 90.7143 | 62.8978 | 36.9932 | 4.2172 | 12.4634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-H.; Lv, D.-Y.; Wang, J.-B. Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs. Mathematics 2023, 11, 2737. https://doi.org/10.3390/math11122737
Zhang L-H, Lv D-Y, Wang J-B. Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs. Mathematics. 2023; 11(12):2737. https://doi.org/10.3390/math11122737
Chicago/Turabian StyleZhang, Li-Han, Dan-Yang Lv, and Ji-Bo Wang. 2023. "Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs" Mathematics 11, no. 12: 2737. https://doi.org/10.3390/math11122737
APA StyleZhang, L. -H., Lv, D. -Y., & Wang, J. -B. (2023). Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs. Mathematics, 11(12), 2737. https://doi.org/10.3390/math11122737