Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model
Abstract
:1. Introduction
- (1)
- To detect and rectify outliers in the wind speed sequence, an outlier detection technique based on the Hampel identifier (HI) is utilized to enhance the accuracy of WSF.
- (2)
- To optimize the hyperparameters of VMD, the variational mode decomposition is improved by the grey wolf optimization (GWO). The decomposition of the complex non-stationary windspeed sequence with the improved VMD (IVMD) algorithm can reduce the non-stationarity and the complexity of the sequence, thus improving the prediction stability and accuracy.
- (3)
- DLinear is introduced as a fundamental prediction model including only one decomposition scheme and two linear networks. Its performance is significantly superior to both LSTM and the currently popular transformer models.
- (4)
- The proposed method combining HI and IVMD with DLinear is utilized for the multi-step WSF of three real windspeed sequences. The performance of the HI-IVMD-DLinear is validated with comparative experiments from various aspects.
2. Materials and Methods
2.1. Hampel Identifier
- (1)
- Computing median, MAD, and standard deviation: For each data point, the median and the MAD of the neighboring points within the window size are calculated, and then the standard deviation based on the median and MAD can be computed as [42]:
- (2)
- Detecting outlier points: A sample point is considered as an outlier if its value satisfies [50]:
- (3)
- Substituting outlier points: For the identified outlier points, the median of the window is used for substitution.
- (4)
- Performing steps (1)–(3) for each sample point.
2.2. Variational Mode Decomposition
- (1)
- Construct the variational problem: It is essential for the variational problem to minimize the sum of central frequencies of the IMFs [51]:
- (2)
- Transform variational problems: To make it easier to solve the variational problem above, a Lagrange function is introduced [51]:
- (3)
- Solve the variational problem: To achieve the best solution to the variational problem, the decomposition signal and their corresponding center frequencies were updated by the alternate direction method of multipliers (ADMM). The cyclic updating rules and termination conditions for and are as follows [51]:
2.3. Grey Wolf Optimization
- (1)
- Wolves surround their prey:
- (2)
- Capturing prey: As the location of prey cannot be determined, the optimal strategy cannot be identified either. Therefore, assuming that the wolf is closest to the prey, followed by and wolves, their distances from the prey are calculated with Equation (11). By iteratively updating the positions of these three types of wolves with Equation (12), the other wolves will also gradually approach the prey. Ultimately, the position of the α wolf is considered to be the location of the prey, leading to the optimal solution.
2.4. VMD Optimized by GWO
- (1)
- Initialize the search space, encompass the ranges of and . Additionally, initiate the parameters of the grey wolf optimization algorithm, such as population size, maximum number of iterations, and so forth.
- (2)
- Generate the initial population of grey wolves randomly within the provided search space. For each grey wolf denoted by (where represents the total number of grey wolves), the position is initialized as (, ).
- (3)
- Calculate the envelope entropy of each grey wolf with Equation (22). The positions of the three grey wolves with the lowest envelope entropy values are updated by , , and , respectively. with the best fitness value is recognized as the optimal solution.
- (4)
- Compute the distance between the remaining grey wolf individuals () and the top three grey wolf individual locations , and according to Equations (15)–(17).
- (5)
- According to Equations (18)–(21), update the position of individual grey wolves.
- (6)
- If the iteration of GWO reaches maximum, the algorithm ends and outputs an optimal solution ; otherwise, return to (3) and continue the optimization search.
2.5. DLinear
2.6. Framework of the Proposed Model
3. Results
3.1. Design of the Experiment
3.1.1. Data Source
3.1.2. Evaluation Metrics
3.1.3. Model Development
3.2. Analysis of Hampel Identifier
3.3. Decomposition Results
3.4. Forecasting Results
3.4.1. Forecasting Accuracy
3.4.2. Improvement Percentage in Accuracy
3.4.3. Analysis of Forecasting Errors
3.4.4. Stability Analysis
3.5. Comparative Analysis of Decomposition Strategies
- Based on the data presented in Table 13, the following conclusions can be inferred:
- Compared with the other decomposition strategies, the predictive models based on IVMD demonstrate the minimal RMSE values, specifically, 0.1712, 0.1668, 0.1472, 0.1253, and 0.0881. This further validates the superior performance of IVMD over the other decomposition strategies. CEEMDAN-VMD and CEEMDAN-LMD fail to address the inherent mode-mixing issue in the CEEMDAN algorithm, although they employ secondary decomposition, which reduces the complexity of sequences once again to some extent. This is why both have lower performance than IVMD.
- Compared to traditional machine learning methods like SVR, deep learning methods including BPNN, LSTM, transformer, and DLinear present significant improvement in predictive accuracy when combined with decomposition methods. For instance, the RMSE of IVMD-SVR and the SVR are 0.3015 and 0.5533, respectively. The RMSE is reduced by only 45.50% when incorporating IVMD. However, IVMD-DLinear and DLinear achieve an RMSE of 0.4332 and 0.0881, respectively. It is demonstrated that a remarkable RMSE reduction of 79.66% is achieved when combined with IVMD.
- For the same decomposition strategy, DLinear consistently obtains the lowest RMSE, implying DLinear generally has optimal accuracy.
- Among different combinations of decomposition strategies and original prediction models, IVMD-DLinear achieves the lowest RMSE of 0.0881. Therefore IVMD-DLinear has best predictive performance than the aforementioned combinations.
4. Discussion
4.1. Discussion of Computational Efficiency
4.2. Discussion of Computational Complexity
5. Conclusions
- HI assists in mitigating the detrimental effects of outliers on prediction accuracy, and enhances the overall precision of the predictions. HI can detect and correct outliers in wind speed series and reduce their interference in prediction.
- The IVMD algorithm demonstrates significant advantages compared to the EEMD, CEEMDAN, CEEMDAN-VMD, and CEEMDAN-LMD algorithms. The CEEMDAN algorithm shows spurious modes during decomposition, which can affect the accuracy of predictions to some extent. CEEMDAN-VMD and CEEMDAN-LMD fail to address the mode-mixing issue in CEEMDAN, although they employ secondary decomposition to reduce sequence complexity to some extent.
- The DLinear model has better optimal performance than the SVR, BPNN, LSTM, and transformer models. Simultaneously, DLinear is stable with higher prediction accuracy than that of the widely used and highly accurate transformer or LSTM models in the field of WSF, and it is not necessary to adjust its hyperparameters. Therefore, DLinear is more suitable for WSF than transformer and LSTM.
- In the one-to-four-steps-ahead forecasting on the three datasets, the HI-IVMD-DLinear model demonstrates excellent prediction accuracy compared with the other eight comparative models. This hybrid model utilizes HI for outlier correction, IVMD for sequence decomposition, and DLinear for prediction. The performance of the hybrid model has been validated at each stage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, F.; Li, W. Research on the Coupling Coordination Degree of “Upstream-Midstream-Downstream” of China’s Wind Power Industry Chain. J. Clean. Prod. 2021, 283, 124633. [Google Scholar] [CrossRef]
- World Wind Energy Association. Worldwide Wind Capacity Reaches 744 Gigawatts—An Unprecedented 93 Gigawatts Added in 2020; World Wind Energy Association: Bonn, Germany, 2021. [Google Scholar]
- Wang, L.; Li, J. Estimation of Extreme Wind Speed in SCS and NWP by a Non-Stationary Model. Theor. Appl. Mech. Lett. 2016, 6, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Guo, Z.-H.; Su, Z.-Y.; Zhao, Z.-Y.; Xiao, X.; Liu, F. An Improved Multi-Step Forecasting Model Based on WRF Ensembles and Creative Fuzzy Systems for Wind Speed. Appl. Energy 2016, 162, 808–826. [Google Scholar] [CrossRef]
- Yang, J.; Astitha, M.; Delle Monache, L.; Alessandrini, S. An Analog Technique to Improve Storm Wind Speed Prediction Using a Dual NWP Model Approach. Mon. Weather. Rev. 2018, 146, 4057–4077. Available online: https://journals.ametsoc.org/view/journals/mwre/146/12/mwr-d-17-0198.1.xml (accessed on 30 April 2023). [CrossRef]
- Karakuş, O.; Kuruoğlu, E.E.; Altınkaya, M.A. One-day Ahead Wind Speed/Power Prediction Based on Polynomial Autoregressive Model. IET Renew. Power Gener. 2017, 11, 1430–1439. Available online: https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-rpg.2016.0972 (accessed on 30 April 2023). [CrossRef] [Green Version]
- Aasim; Singh, S.N.; Mohapatra, A. Repeated Wavelet Transform Based ARIMA Model for Very Short-Term Wind Speed Forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar] [CrossRef]
- Yatiyana, E.; Rajakaruna, S.; Ghosh, A. Wind Speed and Direction Forecasting for Wind Power Generation Using ARIMA Model. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Phan, Q.T.; Wu, Y.K.; Phan, Q.D. A Hybrid Wind Power Forecasting Model with XGBoost, Data Preprocessing Considering Different NWPs. Appl. Sci. 2021, 11, 1100. [Google Scholar] [CrossRef]
- Santamaría-Bonfil, G.; Reyes-Ballesteros, A.; Gershenson, C. Wind Speed Forecasting for Wind Farms: A Method Based on Support Vector Regression. Renew. Energy 2016, 85, 790–809. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, G.-Q.; Zhou, W.; Du, W.; Lu, K.-D. Wind Speed Forecasting Using Nonlinear-Learning Ensemble of Deep Learning Time Series Prediction and Extremal Optimization. Energy Convers. Manag. 2018, 165, 681–695. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Wang, Z.; Ma, C.; Song, Z. A VMD–CISSA–LSSVM Based Electricity Load Forecasting Model. Mathematics 2021, 10, 28. [Google Scholar] [CrossRef]
- Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal Parameters Selection for BP Neural Network Based on Particle Swarm Optimization: A Case Study of Wind Speed Forecasting. Knowl.-Based Syst. 2014, 56, 226–239. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J. A Hybrid Forecasting Approach Applied in Wind Speed Forecasting Based on a Data Processing Strategy and an Optimized Artificial Intelligence Algorithm. Energy 2018, 160, 87–100. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Liu, C.; Wang, W. Improved BP Neural Network Algorithm to Wind Power Forecast. J. Eng. 2017, 2017, 940–943. [Google Scholar] [CrossRef]
- Duan, J.; Zuo, H.; Bai, Y.; Duan, J.; Chang, M.; Chen, B. Short-Term Wind Speed Forecasting Using Recurrent Neural Networks with Error Correction. Energy 2021, 217, 119397. [Google Scholar] [CrossRef]
- Gangwar, S.; Bali, V.; Kumar, A. Comparative Analysis of Wind Speed Forecasting Using LSTM and SVM. EAI Endorsed Trans. Scalable Inf. Syst. 2020, 7, e1. [Google Scholar] [CrossRef]
- Ying, X.; Zhao, K.; Liu, Z.; Gao, J.; He, D.; Li, X.; Xiong, W. Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs. Mathematics 2022, 10, 1943. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ghasemi, M.; Dehghan Manshadi, M.; Mosavi, A. Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory. Mathematics 2021, 9, 871. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y.; Duan, Z.; Xu, Y. Smart Wind Speed Deep Learning Based Multi-Step Forecasting Model Using Singular Spectrum Analysis, Convolutional Gated Recurrent Unit Network and Support Vector Regression. Renew. Energy 2019, 143, 842–854. [Google Scholar] [CrossRef]
- Xiang, L.; Li, J.; Hu, A.; Zhang, Y. Deterministic and Probabilistic Multi-Step Forecasting for Short-Term Wind Speed Based on Secondary Decomposition and a Deep Learning Method. Energy Convers. Manag. 2020, 220, 113098. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, D. Causal Convolutional Gated Recurrent Unit Network with Multiple Decomposition Methods for Short-Term Wind Speed Forecasting. Energy Convers. Manag. 2020, 226, 113500. [Google Scholar] [CrossRef]
- Syu, Y.-D.; Wang, J.-C.; Chou, C.-Y.; Lin, M.-J.; Liang, W.-C.; Wu, L.-C.; Jiang, J.-A. Ultra-Short-Term Wind Speed Forecasting for Wind Power Based on Gated Recurrent Unit. In Proceedings of the 2020 8th International Electrical Engineering Congress (iEECON), Chiang Mai, Thailand, 4–6 March 2020; pp. 1–4. [Google Scholar]
- Wu, N.; Green, B.; Ben, X.; O’Banion, S. Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case. arXiv 2020, arXiv:2001.08317. [Google Scholar]
- Bommidi, B.S.; Teeparthi, K.; Kosana, V. Hybrid Wind Speed Forecasting Using ICEEMDAN and Transformer Model with Novel Loss Function. Energy 2023, 265, 126383. [Google Scholar] [CrossRef]
- Wu, H.; Meng, K.; Fan, D.; Zhang, Z.; Liu, Q. Multistep Short-Term Wind Speed Forecasting Using Transformer. Energy 2022, 261, 125231. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? arXiv 2022, arXiv:2205.13504. [Google Scholar]
- Büyükşahin, Ü.Ç.; Ertekin, Ş. Improving Forecasting Accuracy of Time Series Data Using a New ARIMA-ANN Hybrid Method and Empirical Mode Decomposition. Neurocomputing 2019, 361, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, Y.; Tan, Z. An Adaptive Hybrid Model for Short Term Wind Speed Forecasting. Energy 2020, 190, 115615. [Google Scholar] [CrossRef]
- Shang, Z.; He, Z.; Chen, Y.; Chen, Y.; Xu, M. Short-Term Wind Speed Forecasting System Based on Multivariate Time Series and Multi-Objective Optimization. Energy 2022, 238, 122024. [Google Scholar] [CrossRef]
- Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-Term Wind Speed Forecasting Using Wavelet Transform and Support Vector Machines Optimized by Genetic Algorithm. Renew. Energy 2014, 62, 592–597. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Wind Speed Forecasting Method Based on Deep Learning Strategy Using Empirical Wavelet Transform, Long Short Term Memory Neural Network and Elman Neural Network. Energy Convers. Manag. 2018, 156, 498–514. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting Wind Speed Using Empirical Mode Decomposition and Elman Neural Network. Appl. Soft Comput. 2014, 23, 452–459. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C.; Tian, H.; Li, Y. A Hybrid Model for Wind Speed Prediction Using Empirical Mode Decomposition and Artificial Neural Networks. Renew. Energy 2012, 48, 545–556. [Google Scholar] [CrossRef]
- A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. Available online: https://ieeexplore.ieee.org/document/5947265/ (accessed on 7 April 2023).
- Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind Speed Forecasting Based on the Hybrid Ensemble Empirical Mode Decomposition and GA-BP Neural Network Method. Renew. Energy 2016, 94, 629–636. [Google Scholar] [CrossRef]
- Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A Combined Model Based on CEEMDAN and Modified Flower Pollination Algorithm for Wind Speed Forecasting. Energy Convers. Manag. 2017, 136, 439–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, G.; Chen, B.; Han, J.; Zhao, Y.; Zhang, C. Short-Term Wind Speed Prediction Model Based on GA-ANN Improved by VMD. Renew. Energy 2020, 156, 1373–1388. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Jiao, S. SO-Slope Entropy Coupled with SVMD: A Novel Adaptive Feature Extraction Method for Ship-Radiated Noise. Ocean Eng. 2023, 280, 114677. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Smart Multi-Step Deep Learning Model for Wind Speed Forecasting Based on Variational Mode Decomposition, Singular Spectrum Analysis, LSTM Network and ELM. Energy Convers. Manag. 2018, 159, 54–64. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xu, Y.; Chen, C. Improved Pollution Forecasting Hybrid Algorithms Based on the Ensemble Method. Appl. Math. Model. 2019, 73, 473–486. [Google Scholar] [CrossRef]
- Liu, H.; Shah, S.; Jiang, W. On-Line Outlier Detection and Data Cleaning. Comput. Chem. Eng. 2004, 28, 1635–1647. [Google Scholar] [CrossRef]
- Li, Y.; Geng, B.; Tang, B. Simplified Coded Dispersion Entropy: A Nonlinear Metric for Signal Analysis. Nonlinear Dyn. 2023, 111, 9327–9344. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Geng, B.; Jiao, S. Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis. Fractal Fract. 2022, 6, 544. [Google Scholar] [CrossRef]
- Zhu, K.; Song, X.; Xue, D. Fault Diagnosis of Rolling Bearings Based on IMF Envelope Sample Entropy and Support Vector Machine. J. Inf. Comput. Sci. 2013, 10, 5189–5198. [Google Scholar] [CrossRef]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring Complexity Using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef]
- Pearson, R.K. Outliers in Process Modeling and Identification. IEEE Trans. Control Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, P.; Hao, Y.; Ma, X.; Niu, T.; Yang, W. An Innovative Hybrid Model Based on Outlier Detection and Correction Algorithm and Heuristic Intelligent Optimization Algorithm for Daily Air Quality Index Forecasting. J. Environ. Manag. 2020, 255, 109855. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Peng, T. Multi-Step Ahead Wind Speed Forecasting Using a Hybrid Model Based on Two-Stage Decomposition Technique and AdaBoost-Extreme Learning Machine. Energy Convers. Manag. 2017, 153, 589–602. [Google Scholar] [CrossRef]
- Emeksiz, C.; Tan, M. Multi-Step Wind Speed Forecasting and Hurst Analysis Using Novel Hybrid Secondary Decomposition Approach. Energy 2022, 238, 121764. [Google Scholar] [CrossRef]
Dataset | Time Interval | Sample Size | Minimum | Mean | Maximum | Standard Deviation |
---|---|---|---|---|---|---|
Lanzhou | 1 January 2021–31 March 2021 | 2160 | 0.000 | 1.830 | 6.765 | 1.317 |
Nanjing | 1 August 2021–1 November 2021 | 2232 | 0.000 | 2.849 | 7.657 | 1.705 |
Shijiazhuang | 1 July 2021–1 October 2021 | 2232 | 0.000 | 1.844 | 6.408 | 1.585 |
Methods | Parameters | Values |
---|---|---|
IVMD | Population size | 50 |
Maximum iterations | 30 | |
[3, 11] | ||
[0, 1000] | ||
SVR | C | [0, 10] |
Epsilon | [0, 1] | |
Gamma | [0, 2] | |
BPNN | Dropout | [0.05, 0.2] |
Batchsize | 64 | |
Epochs | 100 | |
Initial lr | 0.1 | |
Hidden_units | [10, 100] | |
LSTM | Dropout | [0.05, 0.2] |
Batchsize | 64 | |
Epochs | 100 | |
Initial lr | 0.1 | |
Hidden_units | [10, 100] | |
Transformer | Dropout | [0.05, 0.2] |
Batchsize | 64 | |
Epochs | 100 | |
Initial lr | 0.1 | |
Model dimension | [64, 256] | |
Feedforward dimension | [128, 256] | |
Heads number | [1, 5] | |
Enc_layers | [1, 5] | |
Dec_layers | [1, 5] | |
DLinear | Batchsize | 64 |
Epochs | 100 | |
Initial lr | 0.1 |
SampEn | Lanzhou | Nanjing | Shijiazhuang |
---|---|---|---|
Original sequence | 1.0562 | 1.0230 | 1.0658 |
Sequence after HI | 1.0497 | 0.9534 | 0.9570 |
Dataset | Model | PMAE (%) | PRMSE (%) | PMAPE (%) |
---|---|---|---|---|
Lanzhou | HI-SVR vs. SVR | 2.1206 | 4.1472 | 2.5125 |
HI-LSTM vs. LSTM | 1.2452 | 3.5612 | 2.0106 | |
HI-Transformer vs. Transformer | 0.8921 | 3.5125 | 2.2215 | |
HI-DLinear vs. DLinear | 0.9915 | 1.1305 | 1.7683 | |
HI-IVMD-DLinear vs. IVMD-DLinear | 0.7624 | 1.0614 | 1.2316 | |
Nanjing | HI-SVR vs. SVR | 1.5125 | 3.8903 | 1.7246 |
HI-LSTM vs. LSTM | 2.2092 | 5.2137 | 3.0165 | |
HI-Transformer vs. Transformer | 1.2875 | 5.1751 | 3.1062 | |
HI-DLinear vs. DLinear | 2.1785 | 2.1867 | 2.1554 | |
HI-IVMD-DLinear vs. IVMD-DLinear | 1.0126 | 1.8751 | 2.1240 | |
Shijiazhuang | HI-SVR vs. SVR | 3.5613 | 3.1451 | 6.1246 |
HI-LSTM vs. LSTM | 2.5146 | 0.8915 | 4.1256 | |
HI-Transformer vs. Transformer | 1.8745 | 1.3271 | 4.6012 | |
HI-DLinear vs. DLinear | 2.0761 | 1.0512 | 3.1251 | |
HI-IVMD-DLinear vs. IVMD-DLinear | 1.5612 | 0.7951 | 2.1531 |
Datasets | t-Statistic | p-Value | 1% Level | 5% Level | 10% Level |
---|---|---|---|---|---|
Lanzhou | −1.714 | 0.3704 | −3.2334 | −2.6828 | −2.3674 |
Nanjing | −1.227 | 0.5513 | −2.8910 | −2.2150 | −1.9674 |
Shijiazhuang | −1.827 | 0.3207 | −3.3517 | −2.7124 | −2.4512 |
Estimation Horizon | Metric | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer | HI-IVMD-DLinear |
---|---|---|---|---|---|---|---|---|---|---|
1-step | MAE | 0.3179 | 0.2773 | 0.2689 | 0.2366 | 0.2064 | 0.1688 | 0.1213 | 0.0767 | 0.0501 |
RMSE | 0.4116 | 0.3750 | 0.3592 | 0.3261 | 0.2582 | 0.2038 | 0.1452 | 0.1069 | 0.0641 | |
MAPE | 0.1535 | 0.1494 | 0.1362 | 0.1213 | 0.1023 | 0.0745 | 0.0700 | 0.0421 | 0.0237 | |
2-step | MAE | 0.4391 | 0.4380 | 0.3345 | 0.3301 | 0.2826 | 0.2273 | 0.2025 | 0.1512 | 0.1207 |
RMSE | 0.6031 | 0.5832 | 0.4533 | 0.4426 | 0.3779 | 0.3152 | 0.2898 | 0.2124 | 0.1578 | |
MAPE | 0.2240 | 0.2251 | 0.1785 | 0.1844 | 0.1596 | 0.1223 | 0.1065 | 0.0814 | 0.0601 | |
3-step | MAE | 0.4512 | 0.4405 | 0.385 | 0.3816 | 0.3434 | 0.2877 | 0.2587 | 0.2223 | 0.1398 |
RMSE | 0.6001 | 0.5813 | 0.5164 | 0.5173 | 0.4567 | 0.4045 | 0.3649 | 0.2882 | 0.1909 | |
MAPE | 0.2356 | 0.2304 | 0.212 | 0.2098 | 0.1799 | 0.1765 | 0.1528 | 0.1103 | 0.0687 | |
4-step | MAE | 0.5240 | 0.5114 | 0.4412 | 0.4133 | 0.3713 | 0.3437 | 0.3381 | 0.2512 | 0.1666 |
RMSE | 0.6861 | 0.6732 | 0.5942 | 0.5559 | 0.4898 | 0.4125 | 0.3538 | 0.3051 | 0.2136 | |
MAPE | 0.2523 | 0.2581 | 0.2345 | 0.2295 | 0.2034 | 0.2010 | 0.1782 | 0.1312 | 0.0839 |
Estimation Horizon | Metric | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer | HI-IVMD-DLinear |
---|---|---|---|---|---|---|---|---|---|---|
1-step | MAE | 0.4463 | 0.4080 | 0.3691 | 0.3572 | 0.3295 | 0.1325 | 0.1152 | 0.0911 | 0.0705 |
RMSE | 0.5533 | 0.5324 | 0.471 | 0.4694 | 0.4332 | 0.1668 | 0.1472 | 0.1253 | 0.0881 | |
MAPE | 0.3839 | 0.3082 | 0.292 | 0.2705 | 0.2418 | 0.0917 | 0.0792 | 0.0632 | 0.0479 | |
2-step | MAE | 0.5244 | 0.5035 | 0.4785 | 0.4696 | 0.3797 | 0.2258 | 0.208 | 0.1717 | 0.1113 |
RMSE | 0.6814 | 0.6615 | 0.6172 | 0.6118 | 0.4699 | 0.2989 | 0.2752 | 0.229 | 0.1477 | |
MAPE | 0.4356 | 0.4045 | 0.3905 | 0.3766 | 0.2557 | 0.1562 | 0.1511 | 0.1118 | 0.0773 | |
3-step | MAE | 0.5724 | 0.5620 | 0.5368 | 0.5304 | 0.4531 | 0.2592 | 0.211 | 0.1871 | 0.1381 |
RMSE | 0.7621 | 0.7394 | 0.6977 | 0.7005 | 0.6014 | 0.3488 | 0.3001 | 0.2624 | 0.1834 | |
MAPE | 0.4761 | 0.4300 | 0.4477 | 0.4459 | 0.3346 | 0.1825 | 0.1629 | 0.1412 | 0.0956 | |
4-step | MAE | 0.6348 | 0.6034 | 0.5716 | 0.5615 | 0.4495 | 0.3071 | 0.2509 | 0.2215 | 0.1648 |
RMSE | 0.8500 | 0.8108 | 0.7718 | 0.7457 | 0.6271 | 0.4024 | 0.3583 | 0.2918 | 0.2289 | |
MAPE | 0.5298 | 0.5009 | 0.4826 | 0.4682 | 0.3532 | 0.2206 | 0.2012 | 0.1811 | 0.1266 |
Estimation Horizon | Metric | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer | HI-IVMD-DLinear |
---|---|---|---|---|---|---|---|---|---|---|
1-step | MAE | 0.3073 | 0.3041 | 0.2697 | 0.2540 | 0.2060 | 0.1441 | 0.1277 | 0.0939 | 0.0669 |
RMSE | 0.3937 | 0.3908 | 0.3564 | 0.3383 | 0.2847 | 0.2013 | 0.1765 | 0.1283 | 0.0861 | |
MAPE | 0.2506 | 0.2281 | 0.1935 | 0.1936 | 0.1510 | 0.1225 | 0.1022 | 0.0661 | 0.0480 | |
2-step | MAE | 0.4121 | 0.4139 | 0.4026 | 0.3745 | 0.2976 | 0.2255 | 0.1768 | 0.1202 | 0.0814 |
RMSE | 0.5261 | 0.5286 | 0.5188 | 0.5040 | 0.3945 | 0.3132 | 0.2371 | 0.1612 | 0.1054 | |
MAPE | 0.2799 | 0.2823 | 0.3379 | 0.2642 | 0.2215 | 0.1946 | 0.1268 | 0.0912 | 0.0569 | |
3-step | MAE | 0.4625 | 0.4574 | 0.4396 | 0.3995 | 0.3246 | 0.2752 | 0.2248 | 0.1512 | 0.1000 |
RMSE | 0.6031 | 0.5997 | 0.5657 | 0.5401 | 0.4224 | 0.3674 | 0.2903 | 0.2342 | 0.1338 | |
MAPE | 0.3412 | 0.3275 | 0.3392 | 0.3114 | 0.2551 | 0.2157 | 0.1735 | 0.1023 | 0.0690 | |
4-step | MAE | 0.4951 | 0.4941 | 0.4871 | 0.4519 | 0.3814 | 0.3502 | 0.2861 | 0.2215 | 0.1439 |
RMSE | 0.6431 | 0.6335 | 0.6195 | 0.5761 | 0.4745 | 0.4264 | 0.3683 | 0.3012 | 0.2141 | |
MAPE | 0.3620 | 0.3639 | 0.3530 | 0.3614 | 0.3095 | 0.2849 | 0.2543 | 0.2202 | 0.1023 |
Estimation Horizon | Metric | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer |
---|---|---|---|---|---|---|---|---|---|
1-step | PMAE (%) | 84.2033 | 82.7196 | 80.9005 | 80.2659 | 78.6032 | 46.7841 | 38.8104 | 22.6125 |
PRMSE (%) | 84.0766 | 83.4535 | 81.2947 | 81.2296 | 79.6612 | 47.1681 | 40.1372 | 29.6887 | |
PMAPE (%) | 87.5236 | 84.4584 | 83.5969 | 82.2938 | 80.1936 | 47.7605 | 39.5475 | 24.2089 | |
2-step | PMAE (%) | 78.7740 | 77.8952 | 76.7398 | 76.3006 | 70.6891 | 50.7040 | 46.4791 | 35.1776 |
PRMSE (%) | 78.3228 | 77.6722 | 76.0693 | 75.8583 | 68.5685 | 50.5914 | 46.3353 | 35.5022 | |
PMAPE (%) | 82.2549 | 80.8899 | 80.2049 | 79.4739 | 69.7645 | 50.5266 | 48.8467 | 30.8587 | |
3-step | PMAE (%) | 75.8735 | 75.4275 | 74.2732 | 73.9633 | 69.5241 | 46.7304 | 34.5396 | 26.1892 |
PRMSE (%) | 75.9363 | 75.1968 | 73.7148 | 73.8202 | 69.5041 | 47.4129 | 38.8968 | 30.1067 | |
PMAPE (%) | 79.9212 | 77.7699 | 78.6447 | 78.5622 | 71.4304 | 47.6040 | 41.3313 | 32.2946 | |
4-step | PMAE (%) | 74.0380 | 72.6866 | 71.1707 | 70.6518 | 63.3334 | 46.3339 | 34.3082 | 25.5982 |
PRMSE (%) | 73.0713 | 71.7671 | 70.3405 | 69.3023 | 63.4987 | 43.1154 | 36.1221 | 21.5559 | |
PMAPE (%) | 76.1047 | 74.7235 | 73.7673 | 72.9588 | 64.1566 | 42.6058 | 37.0858 | 30.0939 |
Estimation Horizon | Metric | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer |
---|---|---|---|---|---|---|---|---|---|
1-step | PMAE (%) | 84.2409 | 81.9333 | 81.3657 | 78.8260 | 75.7224 | 70.3199 | 58.6831 | 34.6806 |
PRMSE (%) | 84.4272 | 82.9060 | 82.1564 | 80.3460 | 75.1727 | 68.5442 | 55.8529 | 40.0374 | |
PMAPE (%) | 84.5591 | 84.1313 | 82.5998 | 80.4556 | 76.8356 | 68.1678 | 66.1645 | 43.7055 | |
2-step | PMAE (%) | 72.5134 | 72.4446 | 63.9205 | 63.4358 | 57.2882 | 46.8873 | 40.3826 | 20.1904 |
PRMSE (%) | 73.8362 | 72.9428 | 65.1858 | 64.3458 | 58.2394 | 49.9432 | 45.5538 | 25.6908 | |
PMAPE (%) | 73.1711 | 73.2950 | 66.3302 | 67.4084 | 62.3519 | 50.8716 | 43.5630 | 26.1879 | |
3-step | PMAE (%) | 69.0184 | 68.2667 | 63.6840 | 63.3623 | 59.2891 | 51.4043 | 45.9572 | 37.1233 |
PRMSE (%) | 68.1908 | 67.1616 | 63.0349 | 63.0957 | 58.1990 | 52.8060 | 47.6892 | 33.7700 | |
PMAPE (%) | 70.8416 | 70.1822 | 67.5903 | 67.2581 | 61.8191 | 61.0778 | 55.0276 | 37.7379 | |
4-step | PMAE (%) | 68.2063 | 67.4222 | 62.2392 | 59.6876 | 55.1269 | 51.5240 | 50.7219 | 33.6865 |
PRMSE (%) | 68.8684 | 68.2711 | 64.0548 | 61.5750 | 56.3870 | 48.2202 | 39.6268 | 29.9954 | |
PMAPE (%) | 66.7518 | 67.4935 | 64.2221 | 63.4508 | 58.7554 | 58.2622 | 52.9276 | 36.0750 |
Estimation Horizon | Metric | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer |
---|---|---|---|---|---|---|---|---|---|
1-step | PMAE (%) | 78.2167 | 77.99 | 75.18 | 73.65 | 67.50 | 53.54 | 47.59 | 28.72 |
PRMSE (%) | 78.1334 | 77.97 | 75.84 | 74.55 | 69.76 | 57.24 | 51.21 | 32.90 | |
PMAPE (%) | 80.8590 | 78.98 | 75.22 | 75.23 | 68.24 | 60.86 | 53.09 | 27.44 | |
2-step | PMAE (%) | 80.2491 | 80.33 | 79.78 | 78.26 | 72.65 | 63.90 | 53.96 | 32.25 |
PRMSE (%) | 79.9665 | 80.06 | 79.68 | 79.09 | 73.28 | 66.35 | 55.54 | 34.62 | |
PMAPE (%) | 79.6722 | 79.84 | 83.16 | 78.46 | 74.31 | 70.77 | 55.11 | 37.63 | |
3-step | PMAE (%) | 78.3790 | 78.14 | 77.25 | 74.97 | 69.19 | 63.66 | 55.51 | 33.88 |
PRMSE (%) | 77.8146 | 77.69 | 76.35 | 75.23 | 68.32 | 63.59 | 53.91 | 42.88 | |
PMAPE (%) | 79.7793 | 78.93 | 79.66 | 77.84 | 72.96 | 68.01 | 60.22 | 32.56 | |
4-step | PMAE (%) | 70.9363 | 70.87 | 70.46 | 68.16 | 62.27 | 58.91 | 49.71 | 35.02 |
PRMSE (%) | 66.7056 | 66.20 | 65.44 | 62.84 | 54.88 | 49.79 | 41.87 | 28.93 | |
PMAPE (%) | 71.7365 | 71.89 | 71.02 | 71.70 | 66.94 | 64.09 | 59.77 | 53.53 |
Estimation Horizon | HI-SVR | HI-BPNN | HI-LSTM | HI-Transformer | HI-DLinear | HI-IVMD-BPNN | HI-IVMD-LSTM | HI-IVMD-Transformer | HI-IVMD-DLinear |
---|---|---|---|---|---|---|---|---|---|
Lanzhou | |||||||||
1-step | 0.1200 | 0.1100 | 0.0893 | 0.1102 | 0.0513 | 0.0197 | 0.0129 | 0.0211 | 0.0028 |
2-step | 0.1920 | 0.1890 | 0.1541 | 0.1899 | 0.1127 | 0.0383 | 0.0313 | 0.0316 | 0.0084 |
3-step | 0.2112 | 0.2216 | 0.1873 | 0.2012 | 0.1577 | 0.0512 | 0.0544 | 0.0412 | 0.0178 |
4-step | 0.2635 | 0.2539 | 0.2367 | 0.2524 | 0.2025 | 0.0551 | 0.0676 | 0.0518 | 0.0264 |
Nanjing | |||||||||
1-step | 0.0667 | 0.0571 | 0.0536 | 0.0610 | 0.0506 | 0.0327 | 0.0114 | 0.0110 | 0.0052 |
2-step | 0.1098 | 0.0835 | 0.0997 | 0.0811 | 0.0710 | 0.0477 | 0.0327 | 0.0411 | 0.0173 |
3-step | 0.1371 | 0.1380 | 0.1178 | 0.1225 | 0.1048 | 0.0902 | 0.0669 | 0.0624 | 0.0353 |
4-step | 0.1620 | 0.1610 | 0.1503 | 0.1503 | 0.1303 | 0.1333 | 0.1047 | 0.1009 | 0.0603 |
Shijiazhuang | |||||||||
1-step | 0.0651 | 0.0610 | 0.0652 | 0.0782 | 0.0514 | 0.0137 | 0.0100 | 0.0416 | 0.0044 |
2-step | 0.1021 | 0.1019 | 0.0922 | 0.0956 | 0.0781 | 0.0412 | 0.0266 | 0.0210 | 0.0096 |
3-step | 0.1241 | 0.1221 | 0.1170 | 0.1018 | 0.0921 | 0.0810 | 0.0591 | 0.0411 | 0.0336 |
4-step | 0.1407 | 0.1395 | 0.1301 | 0.1312 | 0.1139 | 0.1065 | 0.0872 | 0.0721 | 0.0655 |
Strategy | SVR | BPNN | LSTM | Transformer | DLinear |
---|---|---|---|---|---|
Non-decomposition | 0.5533 | 0.5324 | 0.4710 | 0.4694 | 0.4332 |
EMD | 0.4119 | 0.3992 | 0.3611 | 0.3574 | 0.3192 |
CEEMDAN | 0.3633 | 0.2731 | 0.2632 | 0.2427 | 0.174 |
CEEMDAN-VMD | 0.3211 | 0.2031 | 0.1754 | 0.1641 | 0.1259 |
CEEMDAN-LMD | 0.3275 | 0.1832 | 0.1618 | 0.1517 | 0.1187 |
IVMD | 0.3015 | 0.1668 | 0.1472 | 0.1253 | 0.0881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Gong, C.; Chen, S.; Zhou, N. Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model. Mathematics 2023, 11, 2746. https://doi.org/10.3390/math11122746
Liu J, Gong C, Chen S, Zhou N. Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model. Mathematics. 2023; 11(12):2746. https://doi.org/10.3390/math11122746
Chicago/Turabian StyleLiu, Jialin, Chen Gong, Suhua Chen, and Nanrun Zhou. 2023. "Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model" Mathematics 11, no. 12: 2746. https://doi.org/10.3390/math11122746
APA StyleLiu, J., Gong, C., Chen, S., & Zhou, N. (2023). Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model. Mathematics, 11(12), 2746. https://doi.org/10.3390/math11122746