Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maximal Information Coefficient
2.2. Stacking Fusion Algorithm
- 1.
- K base learners are selected to form the first layer of the stacking fusion algorithm warning model, and a metalearner is selected to form the second layer of the stacking fusion algorithm warning model. The selection of basic learners and metalearners to optimize the warning effect can be based on experience, the use of popular models or expert guidance.
- 2.
- For the dataset , where is the warning result corresponding to the nth sample, is the characteristic data associated with the nth sample, and the data are decomposed randomly into datasets of the same dimension . is the training set of the kth fold in k-fold cross verification. If in is , then is the kth test set in k-fold cross-validation. The trained model , where , is obtained using to train the kth base learner.
- 3.
- uses the early warning to obtain the result according to the applied model and then obtains N early warning results for the first layer . The N results are the input dataset for the second layer.
- 4.
- is the input of the second-layer metalearner , and trains according to the actual model situation to obtain a numerical result.
2.3. LSTM and BiLSTM Models
2.4. LightGBM Meta Learner
2.5. Performance Metrics
3. Results
3.1. Study Area
3.2. Warming Threshold Setting
- (1)
- 85% to 95% of the maximum value added in history;
- (2)
- 95% to 100% of the second largest added value in history;
- (3)
- 95% to 105% of the third largest increase in history;
- (4)
- Greater than the sum of landslide displacement in the previous 5 consecutive months.
- (1)
- 95–100% of the maximum value added in history;
- (2)
- 100–105% of the second largest added value in history;
- (3)
- 105–110% of the third largest increase in history;
- (4)
- Greater than the total landslide displacement in the previous 8 consecutive months.
- (1)
- 100–105% of the maximum value added in history;
- (2)
- 105–110% of the second largest added value in history;
- (3)
- 110–115% of the third largest increase in history;
- (4)
- Greater than the total landslide displacement in the previous 11 consecutive months.
- (1)
- Greater than 105% of the historical maximum added value;
- (2)
- Greater than 110% of the second largest added value;
- (3)
- More than 115% of the third largest added value;
- (4)
- Greater than the total landslide displacement in the previous 14 consecutive months.
3.3. Actual Warning Situation
3.4. Warning by Stacked Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Javed, I.; Yang, Z.; Yao, X. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J. Mt. Sci. 2017, 2, 249–268. [Google Scholar]
- Prakash, N.; Manconi, A.; Loew, S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Tradit. Mach. Learn. Models. Remote Sens. 2020, 12, 346. [Google Scholar]
- Samuele, S.; Stefano, L.G.; Ascanio, R. Preface to the Special Issue “Rainfall Thresholds and Other Approaches for Landslide Prediction and Early Warning”. Water 2021, 13, 323. [Google Scholar]
- Wu, W.; Zhang, Q.; Singh, V.P.; Wang, G.; Zhao, J.; Shen, Z.; Sun, S. A Data-Driven Model on Google Earth Engine for Landslide Susceptibility Assessment in the Hengduan Mountains, the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4662. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Yu, X.; Zhang, K.; Song, Y.; Jiang, W.; Zhou, J. Study on landslide susceptibility mapping based on rock–soil char-acteristic factors. Sci. Rep. 2021, 11, 15476. [Google Scholar] [CrossRef]
- Hongtao, N. Smart safety early warning model of landslide geological hazard based on BP neural network. Saf. Sci. 2020, 123, 104572. [Google Scholar] [CrossRef]
- Krkač, M.; Bernat Gazibara, S.; Arbanas, Ž.; Sečanj, M.; Mihalić Arbanas, S. A comparative study of random forests and multiple linear regression in the prediction of landslide velocity. Landslide 2020, 17, 2515–2531. [Google Scholar] [CrossRef]
- Tapeh, A.T.G.; Naser, M.Z. Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientometrics Review of Trends and Best Practices. Arch. Comput. Methods Eng. 2023, 30, 115–239. [Google Scholar] [CrossRef]
- Dogan, A.; Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 2021, 166, 114060. [Google Scholar] [CrossRef]
- Naidu, S.; Sajinkumar, K.S.; Oommen, T.; Anuja, V.J.; Samuel, R.A.; Muraleedharan, C. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci. Front. 2018, 9, 1871–1882. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early warning systems. Earth-Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Ju, N.; Huang, J.; He, C.; Van Asch, T.W.J.; Huang, R.; Fan, X.; Xu, Q.; Xiao, Y.; Wang, J. Landslide early warning, case studies from Southwest China. Eng. Geol. 2020, 279, 105917. [Google Scholar] [CrossRef]
- Brian, A.G.; Arturo, D. Negotiated participatory action research for multi-stakeholder implementation of early warning systems for landslides. Int. J. Disaster Risk Reduct. 2021, 58, 102184. [Google Scholar]
- Zhao, B.; Dai, Q.; Han, D.; Dai, H.; Mao, J.; Zhuo, L. Probabilistic Thresholds for Landslides Warning by Integrating Soil Moisture Conditions with Rainfall Thresholds. J. Hydrol. 2019, 574, 276–287. [Google Scholar] [CrossRef]
- Liu, Q.; Jian, W.; Nie, W. Rainstorm-induced landslides early warning system in mountainous cities based on groundwater level change fast prediction. Sustain. Cities Soc. 2021, 69, 102817. [Google Scholar] [CrossRef]
- Chikalamo, E.E.; Mavrouli, O.C.; Ettema, J.; van Westen, C.J.; Muntohar, A.S.; Mustofa, A. Satellite-derived rainfall thresholds for landslide early warning in Bogowonto Catchment, Central Java, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102093. [Google Scholar] [CrossRef]
- Xu, Q.; Peng, D.; Zhang, S.; Zhu, X.; He, C.; Qi, X.; Zhao, K.; Xiu, D.; Ju, N. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China. Eng. Geol. 2020, 278, 105817. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, P.; Hu, J.; Zhou, P.; Bai, M.; Hu, J. The Application of Multi-Sensor Target Tracking and Fusion Technology to the Comprehensive Early Warning Information Extraction of Landslide Mul-ti-Point Monitoring Data. Measurement 2020, 166, 108044. [Google Scholar] [CrossRef]
- Michele, C.; Ricardo, N.d.; Luca, P.; Nelson, P.; Marcelo, M.; Willy, A.L. The Rio de Janeiro early warning system for rainfall-induced landslides: Analysis of performance for the years 2010–2013. Int. J. Disaster Risk Reduct. 2015, 12, 3–15. [Google Scholar]
- Luca, P.; Michele, C.; José, M.C. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev. 2018, 179, 228–247. [Google Scholar]
- Minu, T.A.; Neelima, S.; Ascanio, R.; Biswajeet, P.; Samuele, S. Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning. CATENA 2021, 200, 105147. [Google Scholar]
- Małgorzata, W.; Ireneusz, M.; Janusz, B. Tree rings as an early warning against catastrophic landslides: Assessing the potential of dendrochronology for determining slope stability. Dendrochronologia 2019, 53, 82–94. [Google Scholar]
- Luca, P.; Stefano, L.G.; Massimo, M.; Maria, T.B.; Silvia, P.; Fausto, G.; Michele, C. Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 2017, 14, 995–1008. [Google Scholar]
- Simon, L.; Sophie, G.; Valentin, G.; Alexandra, K.; Giorgio, V. Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure. Landslides 2017, 14, 141–154. [Google Scholar]
- Gariano, S.L.; Brunetti, M.T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, S.R.; Lee, D.H.; Kim, Y.T.; Lee, J.S. A regional-scale landslide early warning methodology applying statistical and physically based approaches in sequence. Eng. Geol. 2019, 260, 105193. [Google Scholar] [CrossRef]
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2018, 16, 213–231. [Google Scholar] [CrossRef]
- Samuele, S.; Ascaniom, R.; Riccardo, F.; Angela, G.; Antonio, M.; Nicola, C. A Regional-Scale Landslide Warning System Based on 20 Years of Operational Experience. Water 2018, 10, 1297. [Google Scholar]
- Moritz, G.; John, S.; Kurosch, T. Internet of Things Geosensor Network for Cost-Effective Landslide Early Warning Systems. Sensors 2021, 21, 2609. [Google Scholar]
- Minu, T.A.; Neelima, S.; Maria, A.B.; Biswajeet, P.; Binh, T.P.; Samuele, S. Using Field-Based Monitoring to Enhance the Performance of Rainfall Thresholds for Landslide Warning. Water 2020, 12, 3453. [Google Scholar]
- Yan, Y.; Yang, D.S.; Geng, D.X.; Hu, S.; Wang, Z.A.; Hu, W.; Yin, S.Y. Disaster reduction stick equipment: A method for monitoring and early warning of pipeline-landslide hazards. J. Mt. Sci. 2019, 16, 2687–2700. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Qiao, J.; Uchimura, T.; Wang, L. Application and verification of a multivariate real-time early warning method for rainfall-induced landslides: Implication for evolution of landslide-generated debris flows. Landslides 2020, 17, 2409–2419. [Google Scholar] [CrossRef] [Green Version]
- Won, Y.L.; Seon, K.P.; Hyo, H.S. The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea. Landeslide 2021, 18, 1721–1739. [Google Scholar]
- Prakash, S.T.; Basanta, R.A. Development of community-based landslide early warning system in the earthquake-affected areas of Nepal Himalaya. J. Mt. Sci. 2019, 16, 2701–2713. [Google Scholar]
- Yuan, Y.; Muhammad, A.A. The application of the intelligent algorithm in the prevention and early warning of mountain mass landslide disaster. Arab. J. Geosci. 2020, 13, 79. [Google Scholar] [CrossRef]
- Chen, M.; Cai, Z.; Zeng, Y.; Yu, Y. Multi-sensor data fusion technology for the early landslide warning system. J. Ambient Intell. Humaniz. Comput. 2022, 1–8. [Google Scholar] [CrossRef]
- Zhan, Q.; Wang, S.; Guo, F.; Chen, Y.; Wang, L.; Zhao, D. Early warning model and model test verification of rainfall-induced shallow landslide. Bull. Eng. Geol. Environ. 2020, 81, 318. [Google Scholar] [CrossRef]
- Benjamin, B.M.; Rachel, E.B.; Rex, L.B.; Joel, B.S. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning. Landslide 2018, 15, 1909–1919. [Google Scholar]
- Feiyue, L.; Zhenqi, Y.; Wenxue, D.; Tianhong, Y.; Jingren, Z.; Qinglei, Y.; Yachun, M. Rock landslide early warning system combining slope stability analysis, two-stage monitoring, and case-based reasoning: A case study. Bull. Eng. Geol. Environ. 2021, 80, 8433–8451. [Google Scholar]
- Geethu, T.H.; Dhanya, M.; Maneesha, V.R.; Divya, P. Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides 2019, 16, 2395–2408. [Google Scholar]
- Yuxin, G.; Zhanya, X.; Shuang, Z.; Xiangang, L.; Yinli, X. Using distributed root soil moisture data to enhance the performance of rainfall thresholds for landslide warning. Nat. Hazards 2023, 115, 1167–1192. [Google Scholar]
- Rosa, M.P.; Marc, B.; Marcel, H.; Daniel, S. Application of a fuzzy verification framework for the evaluation of a regional-scale landslide early warning system during the January 2020 Gloria storm in Catalonia (NE Spain). Landslides 2022, 19, 1599–1616. [Google Scholar]
- Ascanio, R.; Samuele, S.; Vanessa, C.; Antonio, M.; Angela, G.; Nicola, C. Definition of 3D rainfall thresholds to increase operative landslide early warning system performances. Landslides 2021, 18, 1045–1057. [Google Scholar]
- Chien-Yuan, C. Event-based rainfall warning regression model for landslide and debris flow issuing. Environ. Earth Sci. 2020, 79, 127. [Google Scholar] [CrossRef]
- Minu, T.A.; Neelima, S.; Biswajeet, P.; Samuele, S.; Abdullah, A. Developing a prototype landslide early warning system for Darjeeling Himalayas using SIGMA model and real-time field monitoring. Geosci. J. 2022, 26, 289–301. [Google Scholar]
- Faming, H.; JiaWu, C.; Weiping, L.; Jinsong, H.; Haoyuan, H.; Wei, C. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108326. [Google Scholar]
- Thirugnanam, H.; Ramesh, M.V.; Rangan, V.P. Enhancing the reliability of landslide early warning systems by machine learning. Landslide 2020, 17, 2231–2246. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction Model Using Time Series Analysis Method and Modified LSTM Model. Electronics 2022, 11, 1519. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction based on Time Series Analysis and Double-BiLSTM Model. Int. J. Environ. Res. Public Health 2022, 19, 2077. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, Y.; Liang, W.; Sun, X. Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model. Mathematics 2022, 10, 2203. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.; Grossman, S.R.; Lander, E.S.; Finucane, H.K.; McVean, G.; Turnbaugh, P.J.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, F.; Li, K. A graph model for preventing railway accidents based on the maximal information coefficient. Int. J. Mod. Phys. B 2017, 31, 1750010. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, B.; Hao, M.; Wang, W.; Jiang, Y.; Zong, F. A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient. Aerosp. Sci. Technol. 2021, 116, 106822. [Google Scholar] [CrossRef]
- Mahendran, N.; Vincent, P.D.R.; Srinivasan, K.; Sharma, V.; Jayakody, D.K. Realizing a Stacking Generalization Model for Improving the Prediction Accuracy of Major Depressive Disorder in Adults. IEEE Access 2020, 8, 49509–49522. [Google Scholar] [CrossRef]
- Bakurov, I.; Castelli, M.; Gau, O.; Fontanella, F.; Vanneschi, L. Genetic Programming for Stacked Generalization. Swarm Evol. Comput. 2021, 65, 100913. [Google Scholar] [CrossRef]
- Shen, T.; Yu, H.; Wang, Y.Z. Discrimination of Gentiana and Its Related Species Using IR Spectroscopy Combined with Feature Selection and Stacked Generalizatio. Molecules 2020, 25, 1442. [Google Scholar] [CrossRef] [Green Version]
- Marcella, C.; Lorenzo, B.; Giuseppe, S.; Rita, C. Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model. IEEE Trans. Image Process. 2016, 27, 5142–5154. [Google Scholar]
- Zhang, S.; Xiao, J.; Liu, X.; Yang, Y.; Xie, D.; Zhuang, Y. Fusing Geometric Features for Skeleton-Based Action Recognition Using Multilayer LSTM Networks. IEEE Trans. Multimed. 2018, 20, 2330–2343. [Google Scholar] [CrossRef]
- Germánico, L.; Pablo, A. Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador. Renew. Energy 2022, 183, 351–368. [Google Scholar]
- Mingzhe, Z.; Ninoslav, H.; Josip, Đ.; Igor, K.; Roberto, L.; Vincenzo, D.G.; Sasa, Z.D. Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs. IEEE Trans. Sustain. Energy 2022, 13, 1169–1187. [Google Scholar]
- Mohammed, A.B.; Muhammad, Y.N.; Imad, E.A.; Shaharin, A.S. BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones. Energies 2022, 15, 2226. [Google Scholar]
- Wang, X.; Gao, S.; Guo, Y.; Zhou, S.; Duan, Y.; Wu, D. A Combined Prediction Model for Hog Futures Prices Based on WOA-LightGBM-CEEMDAN. Complexity 2022, 2022, 3216036. [Google Scholar] [CrossRef]
- Wang, X.; Xu, N.; Meng, X.; Chang, H. Prediction of Gas Concentration Based on LSTM-LightGBM Variable Weight Combination Model. Energies 2022, 15, 827. [Google Scholar] [CrossRef]
- Wang, B.; Wu, P.; Chen, Q.; Ni, S. Prediction and Analysis of Train Passenger Load Factor of High-Speed Railway Based on LightGBM Algorithm. J. Adv. Transp. 2021, 2021, 9963394. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Wen, T.; Ma, J. A hybrid intelligent approach for constructing landslide displacement prediction intervals. Appl. Soft Comput. 2019, 81, 105506. [Google Scholar] [CrossRef]
- Du, H.; Song, D.; Chen, Z.; Shu, H.; Guo, Z. Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method. J. Clean. Prod. 2020, 270, 122248. [Google Scholar] [CrossRef]
- Wu, S.; Hu, X.; Zheng, W.; Berti, M.; Qiao, Z.; Shen, W. Threshold Definition for Monitoring Gapa Landslide under Large Variations in Reservoir Level Using GNSS. Remote Sens. 2021, 13, 4977. [Google Scholar] [CrossRef]
- Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajayi, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 2020, 32, 101827. [Google Scholar] [CrossRef]
Parameter | Threshold Setting and Warning Level | |||
---|---|---|---|---|
Landslide displacement | Level 1 | Level 2 | Level 3 | Level 4 |
Increase 179.1–188.5 | Increase 188.5–197.9 | Increase 197.9–207.4 | Increase more than 207.4 | |
More than previous 5 months combined | More than previous 8 months combined | More than previous 11 months combined | More than previous 14 months combined |
Warning Time | Monitoring Value | Warning Level | Satisfied Threshold Conditions |
---|---|---|---|
2004-06 | 132.3 | Level 1 | More than previous 5 months combined |
2005-06 | 312.6 | Level 1 | More than previous 5 months combined |
2007-06 | 741.5 | Level 1 | More than previous 5 months combined |
2007-07 | 930 | Level 1 | Increase 179.1–188.5 |
2007-08 | 1240.9 | Level 4 | Increase more than 207.4 |
2007-09 | 1426.1 | Level 1 | Increase 179.1–188.5 |
Warning Time | Monitoring Value | Warning Level | Satisfied Threshold Conditions |
---|---|---|---|
2008-10 | 1710.3 | Level 4 | Increase by more than 207.4 |
2009-07 | 1827.7 | Level 2 | More than previous 8 months combined |
2010-07 | 1944.9 | Level 1 | More than previous 5 months combined |
2010-08 | 1993.6 | Level 1 | More than previous 5 months combined |
2011-07 | 2188.6 | Level 2 | More than previous 8 months combined |
2012-06 | 2245.1 | Level 1 | More than previous 5 months combined |
Warning Time | Real-Time Monitoring | LSTM | BiLSTM | LSTM-FC | Double-BiLSTM | LMD-BiLSTM |
---|---|---|---|---|---|---|
2008-10 | Level 4 | Level 1 | Level 1 | Level 4 | Level 4 | Level 2 |
2009-05 | - | - | - | - | Level 1 | - |
2009-07 | Level 2 | Level 2 | Level 2 | Level 1 | Level 2 | Level 2 |
2010-04 | - | - | - | - | - | Level 1 |
2010-07 | Level 1 | - | - | - | - | - |
2010-08 | Level 1 | Level 1 | Level 1 | - | - | Level 1 |
2010-09 | - | Level 1 | Level 1 | - | Level 1 | - |
2011-07 | Level 2 | Level 1 | Level 1 | Level 1 | Level 1 | Level 1 |
2012-06 | Level 1 | Level 1 | - | - | Level 1 | Level 1 |
2012-07 | - | - | Level 1 | Level 1 | - | - |
Warning Time | Real-Time Monitoring | Stacking Model |
---|---|---|
2008-10 | Level 4 | Level 4 |
2009-07 | Level 2 | Level 2 |
2010-07 | Level 1 | - |
2010-08 | Level 1 | Level 1 |
2010-09 | - | Level 1 |
2011-07 | Level 2 | Level 1 |
2012-06 | Level 1 | Level 1 |
2012-07 | - | Level 1 |
Warning Time | Real-Time Monitoring | LSTM | BiLSTM | LSTM-FC | Double-BiLSTM | LMD-BiLSTM | Stacking Model |
---|---|---|---|---|---|---|---|
2008-10 | Level 4 | Level 1 | Level 1 | Level 4 | Level 4 | Level 2 | Level 4 |
2009-05 | - | - | - | - | Level 1 | - | - |
2009-07 | Level 2 | Level 2 | Level 2 | Level 1 | Level 2 | Level 2 | Level 2 |
2010-04 | - | - | - | - | - | Level 1 | - |
2010-07 | Level 1 | - | - | - | - | - | - |
2010-08 | Level 1 | Level 1 | Level 1 | - | - | Level 1 | Level 1 |
2010-09 | - | Level 1 | Level 1 | - | Level 1 | - | Level 1 |
2011-07 | Level 2 | Level 1 | Level 1 | Level 1 | Level 1 | Level 1 | Level 1 |
2012-06 | Level 1 | Level 1 | - | - | Level 1 | Level 1 | Level 1 |
2012-07 | - | - | Level 1 | Level 1 | - | - | - |
Model | Minimum Error | Maximum Error | Mean Relative Error | Root Mean Squared Error |
---|---|---|---|---|
LSTM | 0.53 | 73.98 | 13.59 | 17.25 |
BiLSTM | 1.09 | 41.71 | 15.99 | 18.28 |
LSTM-FC | 0.73 | 32.77 | 15.13 | 17.97 |
Double-BiLSTM | 1.00 | 56.51 | 13.08 | 16.07 |
LMD-BiLSTM | 0.14 | 108.44 | 20.15 | 24.67 |
Warning Time | Real-Time Monitoring | Risk Priority Strategy | Stacking Model | |
---|---|---|---|---|
Maximum Warning Level Models | Warning Level | Warning Level | ||
2008-10 | Level 4 | LSTM-FC/Double-BiLSTM | Level 4 | Level 4 |
2009-05 | - | Double-BiLSTM | Level 1 | - |
2009-07 | Level 2 | BiLSTM/Double-BiLSTM/LMD-BiLSTM | Level 2 | Level 2 |
2010-02 | - | LSTM | Level 1 | - |
2010-04 | - | LMD-BiLSTM | Level 1 | - |
2010-07 | Level 1 | - | - | - |
2010-08 | Level 1 | LSTM/BiLSTM/LMD-BiLSTM | Level 1 | Level 1 |
2010-09 | - | LSTM/BiLSTM/Double-BiLSTM | Level 1 | Level 1 |
2011-07 | Level 2 | LSTM/BiLSTM/LSTM-FC/Double-BiLSTM/LMD-BiLSTM | Level 1 | Level 1 |
2012-06 | Level 1 | LSTM/BiLSTM/Double-BiLSTM | Level 1 | Level 1 |
2012-07 | - | BiLSTM/LSTM-FC | Level 1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Ji, Y.; Sun, X. Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm. Mathematics 2023, 11, 2833. https://doi.org/10.3390/math11132833
Lin Z, Ji Y, Sun X. Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm. Mathematics. 2023; 11(13):2833. https://doi.org/10.3390/math11132833
Chicago/Turabian StyleLin, Zian, Yuanfa Ji, and Xiyan Sun. 2023. "Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm" Mathematics 11, no. 13: 2833. https://doi.org/10.3390/math11132833
APA StyleLin, Z., Ji, Y., & Sun, X. (2023). Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm. Mathematics, 11(13), 2833. https://doi.org/10.3390/math11132833