Fuzzy Domination Graphs in Decision Support Tasks
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- it is not clear how the membership functions of the weights should be set;
- the result of a fuzzy weighted sum is difficult to explain to the DM and it is difficult to carry out the correction of weights in case inadequate estimates of alternatives are obtained [31];
- the degree of “fuzzy” evaluations of some criteria may depend on what values other criteria have taken.
- —bad;
- —acceptable;
- —good.
- The values of the required criteria are obtained for all alternatives. These criteria can be calculated using the weighted sum formulas above (9) or preference areas (13) based on the values of the primary criteria (leaves in the criterion aggregation tree). Otherwise, the criteria can be directly evaluated by the DM or the expert.
- Fuzzy adjacency matrices are obtained for each criterion using Formula (21).
- The threshold levels θ = 0 to 1 are cycled through with a given step.
- For each criterion , binary adjacency matrices are obtained:
- Using Kemeny’s median, the average ranking is found. This step will be explained further below.
- A combination of index values is determined, as well as the maximum threshold at which . It is this value of that will be written in the adjacency matrix of the aggregated graph.
- Figure 7 shows the algorithm in the UML notation.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sudakov, V. Improving Air Transportation by Using the Fuzzy Origin–Destination Matrix. Mathematics 2021, 9, 1236. [Google Scholar] [CrossRef]
- Korchagin, S.; Romanova, E.; Serdechnyy, D.; Nikitin, P.; Dolgov, V.; Feklin, V. Mathematical Modeling of Layered Nano-composite of Fractal Structure. Mathematics 2021, 9, 1541. [Google Scholar] [CrossRef]
- Gataullin, T.M.; Gataullin, S.T.; Ivanova, K.V. Modeling an Electronic Auction. In “Smart Technologies” for Society, State and Economy; ISC 2020. Lecture Notes in Networks and Systems; Popkova, E.G., Sergi, B.S., Eds.; Springer: Cham, Switzerland, 2021; Volume 155. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Marto, M.; Bushenkov, V.A.; Reynolds, K.M.; Borges, J.G.; Marques, S. A Web-Based Approach for Visualizing Interactive Decision Maps. Information 2021, 12, 9. [Google Scholar] [CrossRef]
- Dožić, S. Multi-criteria decision making methods: Application in the aviation industry. J. Air Transp. Manag. 2019, 79, 101683. [Google Scholar] [CrossRef]
- Alamoodi, A.H.; Zaidan, B.B.; Albahri, O.S.; Garfan, S.; Ahmaro, I.Y.; Mohammed, R.T.; Zaidan, A.A.; Ismail, A.R.; Albahri, A.S.; Momani, F.; et al. Systematic review of MCDM approach applied to the medical case studies of COVID-19: Trends, bibliographic analysis, challenges, motivations, recommendations, and future directions. Complex Intell. Syst. 2023, 1–27. [Google Scholar] [CrossRef]
- Thanh, N.V. Designing a MCDM Model for Selection of an Optimal ERP Software in Organization. Systems 2022, 10, 95. [Google Scholar] [CrossRef]
- Pramanik, P.K.D.; Biswas, S.; Pal, S.; Marinković, D.; Choudhury, P. A Comparative Analysis of Multi-Criteria Decision-Making Methods for Resource Selection in Mobile Crowd Computing. Symmetry 2021, 13, 1713. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Kahne, S. A procedure for optimizing development decisions. Automatica 1975, 11, 261–269. [Google Scholar] [CrossRef]
- Wang, Y.M.; Luo, Y. Area ranking of fuzzy numbers based on positive and negative ideal points. Comput. Math. Appl. 2009, 58, 1769–1779. [Google Scholar] [CrossRef] [Green Version]
- Bortolan, G.; Degani, R. A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 1985, 15, 1–19. [Google Scholar] [CrossRef]
- Wang, X.; Kerre, E. Reasonable properties for the ordering fuzzy quantities (I). Fuzzy Sets Syst. 2001, 118, 375–385. [Google Scholar] [CrossRef]
- Wang, X.; Kerre, E. Reasonable properties for the ordering fuzzy quantities (II). Fuzzy Sets Syst. 2001, 118, 387–405. [Google Scholar] [CrossRef]
- Wang, X.; Kerre, E. On the classification and the dependencies of the ordering methods. In Fuzzy Logic Foundations and Industrial Applications; Ruan, D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 73–88. [Google Scholar] [CrossRef]
- Facchinetti, G.; Pacchiarotti, N. Evaluations of fuzzy quantities. Fuzzy Sets Syst. 2006, 157, 892–903. [Google Scholar] [CrossRef]
- Adamo, J.M. Fuzzy decision trees. Fuzzy Sets Syst. 1980, 4, 207–219. [Google Scholar] [CrossRef]
- Detyniecki, M.; Yager, R.R. Ranking fuzzy numbers using alpha-weighted valuations. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2001, 8, 573–592. [Google Scholar] [CrossRef]
- Fortemps, P.; Roubens, M. Ranking and defuzzification methods based on area compensation. Fuzzy Sets Syst. 1996, 82, 319–330. [Google Scholar] [CrossRef]
- Chen, S. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 1985, 17, 113–129. [Google Scholar] [CrossRef]
- Adlassnig, K.-P. Fuzzy Set Theory in Medical Diagnosis. IEEE Trans. Syst. Man Cybern. 1986, 16, 260–265. [Google Scholar] [CrossRef]
- Yager, R.R.; Detyniecki, M.; Bouchon-Meunier, B. A context-dependent method for ordering fuzzy numbers using probabilities. Inf. Sci. 2001, 138, 237–255. [Google Scholar] [CrossRef]
- Delgado, M.; Verdegay, J.L.; Villa, M.A. A procedure for ranking fuzzy numbers. Fuzzy Sets Syst. 1988, 26, 49–62. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 1983, 30, 183–224. [Google Scholar] [CrossRef]
- Saade, J.J.; Schwarzlander, H. Ordering fuzzy sets over real line: An approach based on decision making under uncertainty. Fuzzy Sets Syst. 1992, 50, 237–246. [Google Scholar] [CrossRef]
- Noghin, V.D. The Edgeworth-Pareto principle in terms of a fuzzy choice function. Comput. Math. Math. Phys. 2006, 46, 554–562. [Google Scholar] [CrossRef]
- Roubens, M.; Vincke, P. Fuzzy Possibility Graphs and Their Application to Ranking Fuzzy Numbers. In Non-Conventional Preference Relations in Decision Making; Lecture Notes in Economics and Mathematical Systems; Kacprzyk, J., Roubens, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 301. [Google Scholar] [CrossRef]
- Kochkarov, R. Multicriteria Optimization Problem on Prefractal Graph. Mathematics 2022, 10, 930. [Google Scholar] [CrossRef]
- Baas, S.M.; Kwakernaak, H. Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatica 1977, 13, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Barchev, N.; Sudakov, V. On Determining the Position of Expert Confidence Concentration Points When Modifying Membership Functions. In Data Science and Intelligent Systems; CoMeSySo 2021. Lecture Notes in Networks and Systems; Silhavy, R., Silhavy, P., Prokopova, Z., Eds.; Springer: Cham, Switzerland, 2021; Volume 231. [Google Scholar] [CrossRef]
- Yen, V.C. Rule selections in fuzzy expert systems. Expert Syst. Appl. 1999, 16, 79–84. [Google Scholar] [CrossRef]
- Batkovskiy, A.M.; Sudakov, V.A.; Fomina, A.V.; Balashov, V.M. Methods of coordinating fuzzy expert evaluations in the design of metrological support means. J. Phys. Conf. Ser. 2021, 1889, 032050. [Google Scholar] [CrossRef]
- Dutov, A.V.; Nesterov, V.A.; Sudakov, V.A.; Sypalo, K.I. Fuzzy Preference Domains and Their Use for Selecting an Electronic Flight Bag for Flight Crews. J. Comput. Syst. Sci. Int. 2018, 57, 230–238. [Google Scholar] [CrossRef]
- Dranko, O.I.; Rykov, Y.G.; Karandeev, A.A. Structural Analysis of Large-Scale Socio-Technical Systems Based on the Concept of Influence. IFAC-PapersOnLine 2021, 54, 738–743. [Google Scholar] [CrossRef]
- Conitzer, V.; Davenport, A.; Kalagnanam, J. Improved bounds for computing Kemeny rankings. In AAAI; AAAI Press: Boston, MA, USA, 2006; Volume 6, pp. 620–626. Available online: https://cdn.aaai.org/AAAI/2006/AAAI06-099.pdf (accessed on 1 June 2023).
- Vigerske, S.; Gleixner, A. SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework. Optim. Methods Softw. 2018, 33, 563–593. [Google Scholar] [CrossRef]
- Rico, N.; Vela, C.R.; Díaz, I. Reducing the time required to find the Kemeny ranking by exploiting a necessary condition for being a winner. Eur. J. Oper. Res. 2023, 305, 1323–1336. [Google Scholar] [CrossRef]
l | i\j | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1.00 | 0.96 | 0.00 | 0.92 | 0.93 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 |
1 | 1 | 0.00 | 1.00 | 0.00 | 0.17 | 0.01 | 0.94 | 0.02 | 0.21 | 0.01 | 0.06 |
1 | 2 | 1.00 | 0.96 | 1.00 | 0.97 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
1 | 3 | 0.00 | 1.00 | 0.05 | 1.00 | 1.00 | 0.99 | 0.11 | 0.15 | 0.22 | 0.86 |
1 | 4 | 0.00 | 0.95 | 0.02 | 0.09 | 1.00 | 0.80 | 0.00 | 0.08 | 0.02 | 1.00 |
1 | 5 | 0.00 | 0.00 | 0.02 | 0.04 | 0.02 | 1.00 | 0.00 | 0.04 | 0.01 | 0.11 |
1 | 6 | 0.12 | 1.00 | 0.00 | 0.94 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 |
1 | 7 | 0.00 | 1.00 | 0.04 | 1.00 | 0.89 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 |
1 | 8 | 0.00 | 1.00 | 0.08 | 0.91 | 1.00 | 0.87 | 1.00 | 0.00 | 1.00 | 1.00 |
1 | 9 | 0.00 | 0.92 | 0.13 | 0.20 | 0.00 | 1.00 | 0.16 | 0.03 | 0.00 | 1.00 |
2 | 0 | 1.00 | 0.00 | 0.88 | 0.06 | 0.08 | 0.00 | 0.05 | 0.00 | 1.00 | 0.00 |
2 | 1 | 0.98 | 1.00 | 1.00 | 0.08 | 1.00 | 1.00 | 1.00 | 0.06 | 1.00 | 1.00 |
2 | 2 | 0.00 | 0.00 | 1.00 | 0.22 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 3 | 0.95 | 0.90 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 0.81 |
2 | 4 | 0.94 | 0.09 | 1.00 | 0.00 | 1.00 | 0.00 | 0.13 | 0.00 | 1.00 | 0.00 |
2 | 5 | 0.87 | 0.03 | 1.00 | 0.13 | 0.99 | 1.00 | 0.06 | 0.02 | 1.00 | 0.99 |
2 | 6 | 1.00 | 0.04 | 1.00 | 0.11 | 1.00 | 0.84 | 1.00 | 0.04 | 1.00 | 1.00 |
2 | 7 | 0.96 | 1.00 | 0.94 | 0.20 | 0.87 | 0.82 | 0.83 | 1.00 | 0.89 | 1.00 |
2 | 8 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.09 | 0.06 | 0.00 | 1.00 | 0.01 |
2 | 9 | 1.00 | 0.05 | 1.00 | 0.01 | 0.88 | 0.24 | 0.00 | 0.00 | 0.93 | 1.00 |
3 | 0 | 1.00 | 1.00 | 0.07 | 1.00 | 0.00 | 0.88 | 0.88 | 0.00 | 0.00 | 0.08 |
3 | 1 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.06 | 0.00 | 0.18 | 0.00 |
3 | 2 | 0.97 | 0.98 | 1.00 | 1.00 | 0.04 | 0.90 | 1.00 | 0.06 | 1.00 | 0.00 |
3 | 3 | 0.01 | 0.85 | 0.08 | 1.00 | 0.01 | 0.12 | 0.03 | 0.03 | 0.03 | 0.00 |
3 | 4 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.91 | 0.86 | 1.00 | 0.97 | 1.00 |
3 | 5 | 0.00 | 0.96 | 0.01 | 1.00 | 0.01 | 1.00 | 1.00 | 0.02 | 0.00 | 0.01 |
3 | 6 | 0.00 | 0.99 | 0.05 | 0.93 | 0.00 | 0.00 | 1.00 | 0.08 | 0.00 | 0.06 |
3 | 7 | 1.00 | 0.85 | 0.92 | 0.91 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 |
3 | 8 | 1.00 | 1.00 | 0.14 | 0.93 | 0.30 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 |
3 | 9 | 0.99 | 0.92 | 1.00 | 0.92 | 0.06 | 1.00 | 0.93 | 1.00 | 0.98 | 1.00 |
i | 0 | 2 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
j | 6 | 6 | 6 | 0 | 2 | 4 | 8 | 9 | 6 | 6 |
0.1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
... | ... | |||||||||
0.8 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0.9 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
1.0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
i\j | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
3 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
6 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1 | 1 | 0 | 0.9 | 1 |
7 | 0.9 | 1 | 0.9 | 0.9 | 0.9 | 1 | 1 | 1 | 1 | 1 |
8 | 0 | 1 | 0 | 0.9 | 0 | 1 | 1 | 0 | 1 | 1 |
9 | 0.9 | 0.9 | 0.9 | 0.9 | 0 | 1 | 0.8 | 0 | 0.9 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudakov, V.; Zhukov, A. Fuzzy Domination Graphs in Decision Support Tasks. Mathematics 2023, 11, 2837. https://doi.org/10.3390/math11132837
Sudakov V, Zhukov A. Fuzzy Domination Graphs in Decision Support Tasks. Mathematics. 2023; 11(13):2837. https://doi.org/10.3390/math11132837
Chicago/Turabian StyleSudakov, Vladimir, and Alexander Zhukov. 2023. "Fuzzy Domination Graphs in Decision Support Tasks" Mathematics 11, no. 13: 2837. https://doi.org/10.3390/math11132837
APA StyleSudakov, V., & Zhukov, A. (2023). Fuzzy Domination Graphs in Decision Support Tasks. Mathematics, 11(13), 2837. https://doi.org/10.3390/math11132837