Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations
Abstract
:1. Introduction
2. Lump Solution
3. Mixed Solutions of Soliton and Lump Waves
3.1. Lump One-Strip Soliton Interaction Solution
3.2. Lump Double-Strip Soliton Interaction Solution
4. Lump Periodic Soliton Solution
5. Rogue-Wave Solutions
6. Results and Discussion
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Seadawy, A.R.; Rizvi, S.T. Study of breathers, rogue waves and lump solutions for the nonlinear chains of atoms. Opt. Quantum Electron. 2022, 54, 320. [Google Scholar] [CrossRef]
- Ding, Q.; Wong, P.J. A higher order numerical scheme for solving fractional Bagley-Torvik equation. Math. Methods Appl. Sci. 2022, 45, 1241–1258. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Ahmed, S. Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation. Chaos Solitons Fractals 2022, 160, 112258. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ahmed, S.; Rizvi, S.T.; Ali, K. Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics. J. Geom. Phys. 2022, 176, 104507. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ahmed, S.; Rizvi, S.T.; Ali, K. Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system. Chaos Solitons Fractals 2022, 161, 112307. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Ahmed, S. Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory. Chaos Solitons Fractals 2022, 161, 112326. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Ahmed, S.; Younas, M. Applications of lump and interaction soliton solutions to the Model of liquid crystals and nerve fibers. Encycl. Complex. Syst. Sci. 2022, 1–20. [Google Scholar]
- Bashir, A.; Seadawy, A.R.; Ahmed, S.; Rizvi, S.T. The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation. Chaos Solitons Fractals 2022, 163, 112538. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.R.; Ahmad, S.; Younis, M.; Baleanu, D. Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation. Open Phys. 2021, 19, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Wong, P.J. Generalized Alikhanov’s approximation and numerical treatment of generalized fractional sub-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 2021, 97, 105719. [Google Scholar] [CrossRef]
- Ahmad, H.; Seadawy, A.R.; Khan, T.A. Numerical Solution of Korteweg-de Vries-Burgers Equation by the Modified Variational Iteration Algorithm-II arising in shallow water waves. Phys. Scr. 2020, 95, 45210. [Google Scholar] [CrossRef]
- Li, X.; Wong, P.J. gL1 Scheme for Solving a Class of Generalized Time-Fractional Diffusion Equations. Mathematics 2022, 10, 1219. [Google Scholar] [CrossRef]
- Soundararajan, R.; Subburayan, V.; Wong, P.J. Streamline Diffusion Finite Element Method for Singularly Perturbed 1D-Parabolic Convection Diffusion Differential Equations with Line Discontinuous Source. Mathematics 2023, 11, 2034. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Wazwaz, A.M. Novel high-order breathers and rogue waves in the Boussinesq equation via determinants. Int. J. Mod. Phys. 2020, 43, 3701–3715. [Google Scholar] [CrossRef]
- Younas, U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R. Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation. Int. J. Mod. Phys. 2020, 34, 2050291. [Google Scholar] [CrossRef]
- Ghaffar, A.; Ali, A.; Ahmed, S.; Akram, S.; Baleanu, D.; Nisar, K.S. A novel analytical technique to obtain the solitary solutions for nonlinear evolution equation of fractional order. Adv. Differ. Equ. 2020, 1, 308. [Google Scholar] [CrossRef]
- Wang, M.; Li, X. Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 2005, 343, 48–54. [Google Scholar] [CrossRef]
- Jin, S.; Markowich, P.A.; Zheng, C. Numerical simulation of a generalized Zakharov system. J. Comput. Phys. 2004, 201, 376–395. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Sun, F.; Wei, G.W. Numerical methods for the generalized Zakharov system. J. Comput. Phys. 2003, 190, 201–228. [Google Scholar] [CrossRef]
- Bhrawy, A.H. An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 2014, 247, 30–46. [Google Scholar] [CrossRef]
- Zhang, J. Variational approach to solitary wave solution of the generalized Zakharov equation. Comput. Math. Appl. 2007, 54, 1043–1046. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.; Faraz, N.; Yildirim, A. New soliton solutions of the generalized Zakharov equations using He’s variational approach. Appl. Math. Lett. 2011, 24, 965–968. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Z.; Li, K.M.; Lin, C. Exp-function method for solving the generalized-Zakharov equations. Appl. Math. Comput. 2008, 205, 197–201. [Google Scholar] [CrossRef]
- Buhe, E.; Bluman, G.W. Symmetry reductions, exact solutions, and conservation laws of the generalized Zakharov equations. J. Math. Phys. 2015, 56, 101501. [Google Scholar] [CrossRef]
- Wu, Y. Variational approach to the generalized Zakharov equations. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 1245–1248. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Ashraf, M.A.; Younis, M.; Hanif, M. Rational solutions and their interactions with kink and periodic waves for a nonlinear dynamical phenomenon. Int. J. Mod. Phys. B 2021, 35, 2150236. [Google Scholar] [CrossRef]
- Wang, H. Lump and interaction solutions to the (2+1)-dimensional Burgers equation. Appl. Math. Lett. 2018, 85, 27–34. [Google Scholar] [CrossRef]
- Zhou, Y.; Manukure, S.; Ma, W.X. Lump and lump-soliton solutions to the Hirota Satsuma equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 68, 56–62. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Y.; Muhammad, I.; Yin, Q. Lump, periodic lump and interaction lump stripe solutions to the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Mod. Phys. Lett. B 2018, 32, 1850106. [Google Scholar] [CrossRef]
- Li, B.Q.; Ma, Y.L. multiple-lump waves for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. Comput. Math. Appl. 2018, 76, 204–214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seadawy, A.R.; Rizvi, S.T.R.; Zahed, H. Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations. Mathematics 2023, 11, 2856. https://doi.org/10.3390/math11132856
Seadawy AR, Rizvi STR, Zahed H. Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations. Mathematics. 2023; 11(13):2856. https://doi.org/10.3390/math11132856
Chicago/Turabian StyleSeadawy, Aly R., Syed T. R. Rizvi, and Hanadi Zahed. 2023. "Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations" Mathematics 11, no. 13: 2856. https://doi.org/10.3390/math11132856
APA StyleSeadawy, A. R., Rizvi, S. T. R., & Zahed, H. (2023). Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations. Mathematics, 11(13), 2856. https://doi.org/10.3390/math11132856