Sakaguchi Type Starlike Functions Related with Miller-Ross-Type Poisson Distribution in Janowski Domain
Abstract
:1. Introduction and Definitions
Subclasses of Holomorphic (Analytic) Function
- (1) if and only if
- and
- (2) if and only if
- (1) if and only if
- and
- (2) if and only if
2. Properties of the Subclass
3. The Subclass of
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altinkaya, S.; Yalçin, S. Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Ann. Oradea Univ. Math. Fasc. 2017, 24, 5–8. [Google Scholar]
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Ul Haq, A. An application of binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10–21. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Şeker, B.; Eker, S.S.; Çekiç, B. A class of Poisson distributions based upon a two parameter Mittag-Leffler type function. J. Nonlinear Convex Anal. 2023, 24, 475–485. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Murugusundaramoorthy, G.; Alburaikan, A. Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2022, 24, 173–183. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; El-Deeb, S.M. Second Hankel determinant for a class of analytic functions of the Mittag-Leffler-type Borel distribution related with Legendre polynomials. Turk. World Math. Soc. J. Appl. Eng. Math. 2022, 14, 1247–1258. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Wiman, A. Ãœber die Nullstellen der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Eker, S.S.; Ece, S. Geometric properties of the Miller-Ross functions. Iran. J. Sci. Technol. Trans. Sci. 2022, 46, 631–636. [Google Scholar] [CrossRef]
- Seker, B.; Eker, S.S.; Çekiç, B. Certain subclasses of analytic functions associated with Miller-Ross-type Poisson distribution series. Honam Math. J. 2022, 44, 504–512. [Google Scholar] [CrossRef]
- Seker, B.; Eker, S.S.; Çekiç, B. On subclasses of analytic functions associated with Miller-Ross-type Poisson distribution series. Sahand Commun. Math. Anal. 2022, 19, 69–79. [Google Scholar] [CrossRef]
- Eker, S.S.; Murugusundaramoorthy, G.; Şeker, B. Spiral-like functions associated with Miller–Ross-type Poisson distribution series. Bol. Soc. Mat. Mex. 2023, 29, 16. [Google Scholar] [CrossRef]
- Bulboacă, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publications: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Bull. Acad. Plolon. Sci. Ser. Sci. Math. Astron. 1973, 21, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Nasr, M.A.; Aouf, M.K. Starlike function of complex order. J. Nat. Sci. Math. 1985, 25, 1–12. [Google Scholar]
- Sakaguchi, K. On certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Goel, R.M.; Mehrok, B.C. A subclass of starlike functions with respect to symmetric points. Tamkang J. Math. 1982, 13, 11–24. [Google Scholar]
- Aouf, M.K.; El-Ashwah, R.M.; El-Deeb, S.M. Fekete-Szego inequalities for starlike functions with respect to k-Symmetric points of complex order. J. Complex Anal. 2014, 2014, 131475. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Ahmad, K.; Liu, J.L.; Sokol, J. A new class of analytic functions associated with Sălăgean operator. J. Funct. Spaces 2019, 2019, 6157394. [Google Scholar] [CrossRef] [Green Version]
- Sălăgean, G.S. Subclasses of univalent functions. In Proceedings of the Complex Analysis-Fifth Romanian-Finnish Seminar, Bucharest, Romania, 28 June–3 July 1981; Springer: Berlin/Heidelberg, Germany, 1983; pp. 362–372. [Google Scholar]
- Tang, H.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Math. 2021, 6, 12863–12877. [Google Scholar] [CrossRef]
- Cho, N.E.; Ebadian, A.; Bulut, S.; Analouei Adegani, E. Subordination implications and coefficient estimates for subclasses of starlike functions. Mathematics 2020, 8, 1150. [Google Scholar] [CrossRef]
- Allu, V.; Arora, V.; Shaji, A. On the second Hankel determinant of logarithmic coefficients for certain univalent functions. Mediterr. J. Math. 2023, 20, 81. [Google Scholar] [CrossRef]
- Mohammed, N.H. Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points. Mat. Stud. 2023, 59, 68–75. [Google Scholar] [CrossRef]
- Seoudy, T.M. Convolution Results and Fekete–Szegö inequalities for certain classes of symmetric starlike and symmetric convex functions. J. Math. 2022, 2022, 8203921. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.; Purohit, S.D.; Suthar, D.L. Certain class of analytic functions with respect to symmetric points defined by q- calculus. J. Math. 2021, 2021, 8298848. [Google Scholar] [CrossRef]
- Ping, L.C.; Janteng, A. Subclass of starlike functions with respect to symmetric conjugate points. Int. J. Algebra 2011, 5, 755–762. [Google Scholar]
- Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
- Morais, J.; Zayed, H.M. Applications of differential subordination and superordination theorems to fluid mechanics involving a fractional higher-order integral operator. Alex. Eng. J. 2021, 60, 3901–3914. [Google Scholar] [CrossRef]
- Ghaffar Khan, M.; Darus, M.; Bakhtiar, A.; Murugusundaramoorthy, G.; Raees, K.; Nasir, K. Meromorphic Starlike functions with respect to symmetric points. Int. J. Anal. Appl. 2020, 18, 1037–1047. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, S.M.; Alharbi, A.; Murugusundaramoorthy, G. Sakaguchi Type Starlike Functions Related with Miller-Ross-Type Poisson Distribution in Janowski Domain. Mathematics 2023, 11, 2918. https://doi.org/10.3390/math11132918
El-Deeb SM, Alharbi A, Murugusundaramoorthy G. Sakaguchi Type Starlike Functions Related with Miller-Ross-Type Poisson Distribution in Janowski Domain. Mathematics. 2023; 11(13):2918. https://doi.org/10.3390/math11132918
Chicago/Turabian StyleEl-Deeb, Sheza M., Asma Alharbi, and Gangadharan Murugusundaramoorthy. 2023. "Sakaguchi Type Starlike Functions Related with Miller-Ross-Type Poisson Distribution in Janowski Domain" Mathematics 11, no. 13: 2918. https://doi.org/10.3390/math11132918
APA StyleEl-Deeb, S. M., Alharbi, A., & Murugusundaramoorthy, G. (2023). Sakaguchi Type Starlike Functions Related with Miller-Ross-Type Poisson Distribution in Janowski Domain. Mathematics, 11(13), 2918. https://doi.org/10.3390/math11132918