A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study
Abstract
:1. Introduction
2. Related Work
3. Fuzzy Approach Methodology
3.1. Principles of Fuzzy Set Theory
3.2. Fuzzy System
3.3. Framework Description of the Functioning of the Fuzzy Mechanism of the Fuzzy System
- In the fuzzification phase, the entered point values are converted into membership values for individual fuzzy sets using the membership function. The “fuzzification” block in the fuzzy system also includes the IN converter (see Figure 1), which converts real values xi ∈ into internal input values ui ∈ 〈0, 100〉 = Ui. By applying the relevant fuzzification tables, the input vector u = (u1, u2,…, un) is then blurred into a tuple of terms (T1, T2,…, Tn) ∈ S1 × S2…× Sn, with which it coincides, even to a small extent. The set S is then assembled from them, with each element (T1, T2,…, Tn) ∈ S being evaluated according to its degree of coincidence with vector u, which is the number min{μT1(u1),μT2(u2),…,μTn(un)}.
- In the previous stage, sharp sets of variables enter the system, which are subsequently fuzzified, i.e., converted into input fuzzy sets. The next steps include the derivation of the output fuzzy sets using an inference mechanism based on the rule base. In the “application of inference rules”, the relation F−1(T) = {(T1, T2,…, Tn): F(T1, T2,…, Tn) = T, (T1, T2,…, Tn) ∈ S}, T ∈ S, is inversed to projection F and set S is decomposed into the mutually disjoint classes F−1(L), F−1(M) and F−1(H). If any of the resulting decomposition classes are empty (F−1(T) = Ø), they are characterised by the number T = 0; otherwise (F−1(T) ≠ Ø) the characteristic number of class F−1(T) is the number T = max{min{μT1(u1), μT2(u2),…, μTn(un)}: (T1, T2,…, Tn) ∈ F−1(T)}. The number T is interpreted as the strength of the reaction T “lent” to it by vector u = (u1, u2,…, un).
- In the “result processing” phase, the fuzzy mechanism of the fuzzy system generates on V fuzzy subsets T* = {(v, µT*(v)): v ∈ V}, where μT*(v) = min{μT(v), T}, T ∈ S. These are mostly fuzzy subsets of T ∈ {L, M, H} with membership functions of μT(v), bound from above by T constants, so that μT*: V → 〈0, T〉. In other words, in this phase, the evaluation of the rule takes place with the determination of the values of the causes, creating the minimum result value of the entire rule.
- In the “aggregation” phase, the output values of all the activated rules for each linguistic variable are united into one fuzzy set, i.e., the fuzzy subsets L*, M*, and H* are united, resulting in a fuzzy set R = {(v, µagg(v)): v ∈ V} = L* ∪ M* ∪ H*, in which µagg(v) = max{μL*(v), μM*(v), μH*(v)}, v ∈ V.
- Finally, in the “defuzzification” phase, the fuzzy mechanism of the fuzzy system, via integration using the parts over the interval 〈0, 100〉, finds the values of the definite integrals ∫v · μagg(v) dv and ∫μagg(v) dv and, from them, a ratio is obtained:
4. Data
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|
x_EPS ($) | −0.31 | −0.79 | −0.38 | −0.33 | 0.21 | 1.63 | 2.55 |
x_FFR (%) | 0.55 | 1.33 | 2.40 | 1.55 | 0.09 | 0.07 | 4.33 |
x_COMP ($) | 5383 | 6903 | 6635 | 8973 | 12,888 | 15,645 | 10,466 |
Y_TSLA ($) | 14 | 21 | 22 | 28 | 235 | 352 | 123 |
5. Construction of the Fuzzy Prediction Model
6. Results: Fuzzy Prediction for TSLA Share PRICE and Short-Term Trend for Beginning of 2023
- The expert chose the frequency and data range of the input and output variables. The expert’s rationale was: the frequency of the annual closing prices of a three-year historically known period sufficiently determines the price shift in the subsequent short-term horizon of 1–12 months; the choice of a longer period for analysis is inadequate, given the landmark development of the input and output variables, both recent and current.
- The expert chose a uniform distribution of points a, b, c, and d on the interval of the values y ∈ Y = 〈0, 100〉 by which they defined the progressions of the membership functions for all the variables. The expert’s rationale was: the courses of the membership functions defined in this way correspond to the state of the highest degree of uncertainty, which corresponds to the situation of uncertainty regarding the future decisions of the FED, the development of the economy, the marketing behaviour of TSLA, and the public engagement of the owner, Elon Musk.
- The expert chose to select the prevailing element rule. The expert’s rationale was: the choice of the prevailing element is the choice of a rational decision maker with a neutral attitude to risk.
7. Discussion: Functioning of Fuzzy Neural Network and Fuzzy System in the Field of Time Series Value Prediction
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stefko, R.; Heckova, J.; Gavurova, B.; Valentiny, T.; Chapcakova, A.; Kascakova, D.R. An analysis of the impact of economic context of selected determinants of cross-border mergers and acquisitions in the EU. Econ. Res.-Ekon. Istraživanja 2022, 35, 6385–6402. [Google Scholar] [CrossRef]
- Ng’ang’a, F.W.; Oleche, M. Modelling and Forecasting of Crude Oil Price Volatility Comparative Analysis of Volatility Models. J. Financ. Risk Manag. 2022, 11, 154–187. [Google Scholar] [CrossRef]
- Chu, J.; Chan, S.; Nadarajah, S.; Osterrieder, J. GARCH modelling of cryptocurrencies. J. Risk Financ. Manag. 2017, 10, 17. [Google Scholar] [CrossRef]
- Debnath, P.; Srivastava, H.M. Optimal Returns in Indian Stock Market during Global Pandemic: A Comparative Study. J. Risk Financ. Manag. 2021, 14, 592. [Google Scholar] [CrossRef]
- Nikou, M.; Mansourfar, G.; Bagherzadeh, J. Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms. Intell. Syst. Account. Financ. Manag. 2019, 26, 164–174. [Google Scholar] [CrossRef]
- Vochozka, M.; Horák, J.; Šuleř, P. Equalizing seasonal time series using artificial neural networks in predicting the Euro–Yuan exchange rate. J. Risk Financ. Manag. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Castillo, O.; Melin, P. Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic. Chaos Solitons Fractals 2020, 140, 110242. [Google Scholar] [CrossRef]
- Polishchuk, V.; Kelemen, M.; Gavurová, B.; Varotsos, C.; Andoga, R.; Gera, M.; Christodoulakis, J.; Soušek, R.; Kozuba, J.; Blišťan, P.; et al. A Fuzzy Model of Risk Assessment for Environmental Start-Up Projects in the Air Transport Sector. Int. J. Environ. Res. Public Health 2019, 16, 3573. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-F.; Tsaur, R.-C. Insight of a fuzzy regression model. Fuzzy Sets Syst. 2000, 112, 355–369. [Google Scholar] [CrossRef]
- Tsaur, R.C. A fuzzy time series-Markov chain model with an application to forecast the exchange rate between the Taiwan and US dollar. Int. J. Innov. Comput. Inf. Control. 2012, 8, 4931–4942. [Google Scholar]
- Souza, P.V.D.C. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature. Appl. Soft Comput. 2020, 92, 106275. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Ye, X.; Mou, X. Machine Learning for Tomographic Imaging; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Khuat, T.T.; Le, M.H. An Application of Artificial Neural Networks and Fuzzy Logic on the Stock Price Prediction Problem. JOIV: Int. J. Inform. Vis. 2017, 1, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Kulkarni, N. Fuzzy Neural Network for Pattern Classification. Procedia Comput. Sci. 2020, 167, 2606–2616. [Google Scholar] [CrossRef]
- Kumar, G.; Jain, S.; Singh, U.P. Stock Market Forecasting Using Computational Intelligence: A Survey. Arch. Comput. Methods Eng. 2020, 28, 1069–1101. [Google Scholar] [CrossRef]
- Hašková, S.; Šuleř, P.; Krulický, T. Advantages of fuzzy approach compared to probabilistic approach in project evaluation. Entrep. Sustain. Issues 2021, 9, 446–456. [Google Scholar] [CrossRef]
- Cheng, S.-H.; Chen, S.-M.; Jian, W.-S. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Inf. Sci. 2016, 327, 272–287. [Google Scholar] [CrossRef]
- Zhang, R.; Ashuri, B.; Deng, Y. A novel method for forecasting time series based on fuzzy logic and visibility graph. Adv. Data Anal. Classif. 2017, 11, 759–783. [Google Scholar] [CrossRef]
- Moshkin, V.; Kurilo, D.; Yarushkina, N. Integration of Fuzzy Ontologies and Neural Networks in the Detection of Time Series Anomalies. Mathematics 2023, 11, 1204. [Google Scholar] [CrossRef]
- Maciel, L.; Ballini, R. Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting. Comput. Econ. 2020, 57, 743–771. [Google Scholar] [CrossRef]
- Gündoğdu, F.K.; Kahraman, C. A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Comput. 2019, 24, 4607–4621. [Google Scholar] [CrossRef]
- Ben Jabeur, S.; Hassine, R.B.; Mefteh-Wali, S. Firm financial performance during the financial crisis: A French case study. Int. J. Financ. Econ. 2020, 26, 2800–2812. [Google Scholar] [CrossRef]
- Song, Y.; Liu, T.; Liang, D.; Li, Y.; Song, X. A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China’s Carbon Market. Ecol. Econ. 2018, 157, 253–265. [Google Scholar] [CrossRef]
- Hašková, S. Analysis of Prediction of Current Profit and Interval Fuzzy Profit in the Case of Subsidized Projects. In Proceedings of the 13th International Days of Statistics and Economics, Prague, Czech Republic, 5–7 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Taliento, M. Corporate Valuation: Looking Beyond the Forecast Period Through New “Fuzzy Lenses”. IEEE Trans. Eng. Manag. 2019, 68, 467–482. [Google Scholar] [CrossRef]
- Lo, F.-Y.; Wong, W.-K.; Geovani, J. Optimal combinations of factors influencing the sustainability of Taiwanese firms. Int. J. Emerg. Mark. 2021, 16, 909–928. [Google Scholar] [CrossRef]
- Shao, J.; Liang, C.; Liu, Y.; Xu, J.; Zhao, S. Relief demand forecasting based on intuitionistic fuzzy case-based reasoning. Socio-Econ. Plan. Sci. 2020, 74, 100932. [Google Scholar] [CrossRef]
- Bayram, M.; Akat, M. Market-neutral trading with fuzzy inference, a new method for the pairs trading strategy. Eng. Econ. 2019, 30, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Long, H.; Wang, Y.; Wang, Y. Stock index forecasting: A new fuzzy time series forecasting method. J. Forecast. 2020, 40, 653–666. [Google Scholar] [CrossRef]
- Chourmouziadis, K.; Chourmouziadou, D.K.; Chatzoglou, P.D. Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach. Comput. Econ. 2020, 57, 1183–1216. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Ahmed, I.E.; Mehdi, R.; Hussain, H. Impact of corporate performance on stock price predictions in the UAE markets: Neuro-fuzzy model. Intell. Syst. Account. Financ. Manag. 2021, 28, 52–71. [Google Scholar] [CrossRef]
- Chang, P.-C.; Liu, C.-H. A TSK type fuzzy rule based system for stock price prediction. Expert Syst. Appl. 2008, 34, 135–144. [Google Scholar] [CrossRef]
- Liu, C.-F.; Yeh, C.-Y.; Lee, S.-J. Application of type-2 neuro-fuzzy modeling in stock price prediction. Appl. Soft Comput. 2012, 12, 1348–1358. [Google Scholar] [CrossRef]
- Xie, C.; Rajan, D.; Chai, Q. An interpretable Neural Fuzzy Hammerstein-Wiener network for stock price prediction. Inf. Sci. 2021, 577, 324–335. [Google Scholar] [CrossRef]
- Nasiri, H.; Ebadzadeh, M.M. MFRFNN: Multi-Functional Recurrent Fuzzy Neural Network for Chaotic Time Series Prediction. Neurocomputing 2022, 507, 292–310. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A. Systematic literature review of fuzzy logic based text summarization. Iran. J. Fuzzy Syst. 2019, 16, 45–59. [Google Scholar] [CrossRef]
- Talpur, N.; Abdulkadir, S.J.; Alhussian, H.; Hasan, H.; Aziz, N.; Bamhdi, A. A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods. Neural Comput. Appl. 2022, 34, 1837–1875. [Google Scholar] [CrossRef]
- Kar, S.; Das, S.; Ghosh, P.K. Applications of neuro fuzzy systems: A brief review and future outline. Appl. Soft Comput. 2014, 15, 243–259. [Google Scholar] [CrossRef]
- Agrawal, S.C. Deep learning based non-linear regression for Stock Prediction. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1116, p. 012189. [Google Scholar]
- Barapatre, O.; Tete, E.; Sahu, C.L.; Kumar, D.; Kshatriya, H. Stock price prediction using artificial neural network. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 916–922. [Google Scholar]
- Aldhyani, T.H.H.; Alzahrani, A. Framework for Predicting and Modeling Stock Market Prices Based on Deep Learning Algorithms. Electronics 2022, 11, 3149. [Google Scholar] [CrossRef]
- Alkhatib, K.; Khazaleh, H.; Alkhazaleh, H.A.; Alsoud, A.R.; Abualigah, L. A New Stock Price Forecasting Method Using Active Deep Learning Approach. J. Open Innov. Technol. Mark. Complex. 2022, 8, 96. [Google Scholar] [CrossRef]
- Czakon, W.; Niemand, T.; Gast, J.; Kraus, S.; Frühstück, L. Designing coopetition for radical innovation: An experimental study of managers’ preferences for developing self-driving electric cars. Technol. Forecast. Soc. Chang. 2020, 155, 119992. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, K.; Kannan, P. Identifying Market Structure: A Deep Network Representation Learning of Social Engagement. J. Mark. 2021, 86, 37–56. [Google Scholar] [CrossRef]
- Chen, Y.; Chowdhury, S.D.; Donada, C. Mirroring hypothesis and integrality: Evidence from Tesla Motors. J. Eng. Technol. Manag. 2019, 54, 41–55. [Google Scholar] [CrossRef]
- Kozinets, R.V. YouTube utopianism: Social media profanation and the clicktivism of capitalist critique. J. Bus. Res. 2019, 98, 65–81. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Novák, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 517. [Google Scholar]
- Běhounek, L.; Cintula, P. Fuzzy class theory. Fuzzy Sets Syst. 2005, 154, 34–55. [Google Scholar] [CrossRef]
- Hašková, S.; Fiala, P. A fuzzy approach for the estimation of foreign investment risk based on values of rating indices. Risk Manag. 2019, 21, 183–199. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, D. Fundamentals of Fuzzy Logic Control—Fuzzy Sets, Fuzzy Rules and Defuzzifications. In Advances in Industrial Control; Springer: London, UK, 2006; pp. 17–36. [Google Scholar] [CrossRef]
- Shen, Q.; Chouchoulas, A. A rough-fuzzy approach for generating classification rules. Pattern Recognit. 2002, 35, 2425–2438. [Google Scholar] [CrossRef] [Green Version]
- Boyacioglu, M.A.; Avci, D. An Adaptive Network-Based Fuzzy Inference System (ANFIS) for the prediction of stock market return: The case of the Istanbul Stock Exchange. Expert Syst. Appl. 2010, 37, 7908–7912. [Google Scholar] [CrossRef]
- Alenezy, A.H.; Ismail, M.T.; Al Wadi, S.; Tahir, M.; Hamadneh, N.N.; Jaber, J.J.; Khan, W.A. Forecasting Stock Market Volatility Using Hybrid of Adaptive Network of Fuzzy Inference System and Wavelet Functions. J. Math. 2021, 2021, 9954341. [Google Scholar] [CrossRef]
- Macrotrends Federal Funds Rate—62 Year Historical Chart. 2023. Available online: https://www.macrotrends.net/2015/fed-funds-rate-historical-chart (accessed on 10 December 2022).
- Yahoo!Finance Tesla, Inc. (TSLA). 2023. Available online: https://finance.yahoo.com/quote/TSLA/history/ (accessed on 5 February 2023).
- Macrotrends NASDAQ Composite—45 Year Historical Chart. 2023. Available online: https://www.macrotrends.net/1320/nasdaq-historical-chart (accessed on 10 December 2022).
- Macrotrends Tesla EPS—Earnings per Share 2010–2022|TSLA. 2023. Available online: https://www.macrotrends.net/stocks/charts/TSLA/tesla/eps-earnings-per-share-diluted (accessed on 10 December 2022).
- Kannengiesser, U.; Gero, J.S. Empirical evidence for Kahneman’s System 1 and System 2 thinking in design. Hum. Behav. Design. 2019, 89–100. [Google Scholar] [CrossRef]
- Thagard, P. Mind: Introduction to Cognitive Science; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Vimal, K.; Vinodh, S. Application of artificial neural network for fuzzy logic based leanness assessment. J. Manuf. Technol. Manag. 2013, 24, 274–292. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Sugeno, M. (Eds.) Fuzzy Systems: Modeling and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Shihabudheen, K.; Pillai, G. Recent advances in neuro-fuzzy system: A survey. Knowl.-Based Syst. 2018, 152, 136–162. [Google Scholar] [CrossRef]
- Mittal, K.; Jain, A.; Vaisla, K.S.; Castillo, O.; Kacprzyk, J. A comprehensive review on type 2 fuzzy logic applications: Past, present and future. Eng. Appl. Artif. Intell. 2020, 95, 103916. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, D.; Almudaifer, A.I.; Yan, S.; Jiang, Z.; Zhou, Y. Belt: A pipeline for stock price prediction using news. In Proceedings of the 2020 IEEE International Conference on Big Data, Online, 10–13 December 2020; pp. 1137–1146. [Google Scholar]
- Velu, S.R.; Ravi, V.; Tabianan, K. Multi-Lexicon Classification and Valence-Based Sentiment Analysis as Features for Deep Neural Stock Price Prediction. Sci 2023, 5, 8. [Google Scholar] [CrossRef]
- Bhadkamar, A.; Bhattacharya, S. Tesla Inc. Stock Prediction using Sentiment Analysis. Australas. Account. Bus. Financ. J. 2022, 16, 52–66. [Google Scholar] [CrossRef]
- Ij, H. Statistics versus machine learning. Nat. Methods 2018, 15, 233. [Google Scholar]
Ui\Si | Li | Mi | Hi |
---|---|---|---|
ui ˂ ai | 1 | 0 | 0 |
ai ≤ ui ˂ bi | (bi − ui)/(bi − ai) | (ui − ai)/(bi − ai) | 0 |
bi ≤ ui ˂ ci | 0 | 1 | 0 |
ci ≤ ui ˂ di | 0 | (di − ui)/(di − ci) | (ui − ci)/(di − ci) |
ui ≥ di | 0 | 0 | 1 |
Year | 2020 | 2021 | 2022 |
---|---|---|---|
EPS | 0 | 61 | 100 |
FFR (%) | 100 | 0 | 0 |
COMP ($) | 47 | 100 | 0 |
Y_TSLA ($) | 100 |
Interval | ui ˂ 20 | 20 ≤ ui ˂ 40 | 40 ≤ ui ˂ 60 | 60 ≤ ui ˂ 80 | ui ≥ 80 |
---|---|---|---|---|---|
Li | 1 | (40 − ui)/20 | 0 | 0 | 0 |
Mi | 0 | (ui − 20)/20 | 1 | (80 − ui)/20 | 0 |
Hi | 0 | 0 | 0 | (ui − 60)/20 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hašková, S.; Šuleř, P.; Kuchár, R. A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study. Mathematics 2023, 11, 3033. https://doi.org/10.3390/math11133033
Hašková S, Šuleř P, Kuchár R. A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study. Mathematics. 2023; 11(13):3033. https://doi.org/10.3390/math11133033
Chicago/Turabian StyleHašková, Simona, Petr Šuleř, and Róbert Kuchár. 2023. "A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study" Mathematics 11, no. 13: 3033. https://doi.org/10.3390/math11133033
APA StyleHašková, S., Šuleř, P., & Kuchár, R. (2023). A Fuzzy Multi-Criteria Evaluation System for Share Price Prediction: A Tesla Case Study. Mathematics, 11(13), 3033. https://doi.org/10.3390/math11133033