Using an Interval Type-2 Fuzzy AROMAN Decision-Making Method to Improve the Sustainability of the Postal Network in Rural Areas
Abstract
:1. Introduction
2. Literature Review on the Criteria for the Postal Network Assessment
Attributes or Potential Criteria (PC) | Type of Attribute | Definition | Authors |
---|---|---|---|
Vulnerable groups—PC1 | maximization | The number of people from vulnerable groups (older people, people with a lack of mobility, low-income people, single parents, etc.) | Milutinović, Marković, Stanivuković, Švadlenka, Dobrodolac [22]; Hamilton [29] |
Legal entities—PC2 | maximization | Number of legal entities in the territory covered by the observed PNU | Cabras, Lau [31]; Christiaanse, Haartsen [32] |
Efficiency—PC3 | maximization | The efficiency of a PNU as a ratio of the average monthly PNU incomes and the average monthly PNU outcomes | Ralevic, Dobrodolac, Markovic, Mladenovic [33]; Filippini, Zola [34] |
Employees—PC4 | maximization | Number of employees in the observed PNU | Ralević, Dobrodolac, Marković [18] Dobrodolac, Švadlenka, Čubranić-Dobrodolac, Čičević, Stanivuković [35] |
Mobile and Internet network coverage—PC5 | minimization | Mobile and internet network coverage in the area of observed PNU | Klingenberg, Bzhilyanskaya, Ravnitzky [36] Budziewicz-Guźlecka, Drab-Kurowska [37] |
Competition—PC6 | minimization | The number of competing organizations providing similar services | Mizutani, Uranishi [38] |
Quality of postal services—PC7 | maximization | User assessment of the provided service quality | Klingenberg, Bzhilyanskaya, Ravnitzky [36] Matúšková, Madleňáková [39] |
The expertise of employees—PC8 | maximization | User assessment of the expertise of employees | Neupane, Kyrönlahti, Prakash, Siukola, Kosonen, Lumme-Sandt, Nikander, Nygård [40] |
The kindness of employees—PC9 | maximization | User assessment of the kindness of employees | Drašković, Průša, Čičević, Jovčić [41] |
Interior and exterior of the post office—PC10 | maximization | Interior and exterior attractiveness of the observed PNU | Minami [42] |
Appropriate working hours—PC11 | maximization | Availability of the system at the daily and weekly level | Neutens, Delafontaine, Schwanen, van de Weghe [43] |
Range of services—PC12 | maximization | The range of services should be adjusted to customer needs | Dobrodolac, Ralević, Švadlenka, Radojičić [19] |
Waiting time in the line—PC13 | minimization | User perception of waiting time get access to post office counter | Doble [44] |
Easiness of access—PC14 | maximization | Easy access to the observed PNU (parking, bus station, …) | Mostarac, Kavran, Rakić [46] |
Access for people with disabilities—PC15 | maximization | Width of the entrance, step-free access, assistance, low-level counters, portable PIN pads, hearing loops, staff interaction | Shergold, Parkhurst [30] |
The proximity of an alternative post office—PC16 | minimization | The proximity of an alternative post office in case of shutting down the observed PNU | Vaishar, Št’astná, Ilaria, Kataishi, Akhavan, Senjyu [45] |
Covered area—PC17 | maximization | Delivery area of the observed PNU | Çakır, Perçin, Min [48] |
Number of mailboxes—PC18 | maximization | Number of delivery points/number of households | Mostarac, Mostarac, Kavran, Šarac [47] |
Number of routes—PC19 | maximization | Number of routes in the delivery area of a PNU | Nebro, García-Nieto, Berlí, Warchulski, Kozdrowski [49] |
Number of norm minutes per month—PC20 | maximization | The overall realized norm minutes for a certain period, which represents a productivity measure of a PNU | de Araújo, Dos Reis, da Silva, Aktas [50] |
3. Methods
3.1. Determination of Criteria Weights by the FUCOM Method
- (1)
- that the ratio of the weight coefficients is equal to the comparative priority among the observed criteria () defined in Step 2; i.e., that the following condition is met [51]:
- (2)
- In addition to condition (3), the final values of the weight coefficients should satisfy the condition of mathematical transitivity; i.e., that ⊗ = . Since = and = , the condition that ⊗ = is obtained. Thus, yet another condition that the final values of the weight coefficients of the evaluation criteria need to meet is obtained, namely [51]:
3.2. Ranking Alternatives Using a Type-2 Fuzzy AROMAN Method
3.2.1. Preliminaries on Type-2 Fuzzy Arithmetic
3.2.2. Type-2 Fuzzy AROMAN Method
4. Case Study—Optimization of the Rural Postal Network in the Region of Bajina Bašta, Serbia
- 31251 Mitrovac—alternative 1 (A1);
- 31253 Zlodol—alternative 2 (A2);
- 31254 Kostojevići—alternative 3 (A3);
- 31255 Rogačica—alternative 4 (A4);
- 31256 Perućac—alternative 5 (A5);
- 31258 Bačevci—alternative 6 (A6).
4.1. The Results of the FUCOM Method
4.2. The Results of a Type-2 Fuzzy AROMAN Method
5. Discussion
5.1. Sensitivity Analysis Based on Different Defuzzification Approaches
5.2. Computational Complexity
5.3. Possible Directions for Postal Network Reorganization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Puška, A.; Kozarević, S.; Okičić, J. Investigating and Analyzing the Supply Chain Practices and Performance in Agro-Food Industry. Int. J. Manag. Sci. Eng. Manag. 2019, 15, 9–16. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Zolfani, S.H.; Pamučar, D. Application of Interval Fuzzy Logic in Selecting a Sustainable Supplier on the Example of Agricultural Production. Symmetry 2021, 13, 774. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Phang, C.W.; Wei, J. Using Microblog to Enhance Public Service Climate in the Rural Areas. Gov. Inf. Q. 2020, 37, 101402. [Google Scholar] [CrossRef]
- Puška, A.; Štilić, A.; Stojanović, I. Approach for Multi-Criteria Ranking of Balkan Countries Based on the Index of Economic Freedom. J. Decis. Anal. Intell. Comput. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Salemink, K.; Strijker, D.; Bosworth, G. Rural Development in the Digital Age: A Systematic Literature Review on Unequal ICT Availability, Adoption, and Use in Rural Areas. J. Rural Stud. 2017, 54, 360–371. [Google Scholar] [CrossRef]
- Prus, P.; Sikora, M. The Impact of Transport Infrastructure on the Sustainable Development of the Region—Case Study. Agriculture 2021, 11, 279. [Google Scholar] [CrossRef]
- Wieliczko, B.; Kurdyś-Kujawska, A.; Floriańczyk, Z. EU Rural Policy’s Capacity to Facilitate a Just Sustainability Transition of the Rural Areas. Energies 2021, 14, 5050. [Google Scholar] [CrossRef]
- Xue, E.; Li, J.; Li, X. Sustainable Development of Education in Rural Areas for Rural Revitalization in China: A Comprehensive Policy Circle Analysis. Sustainability 2021, 13, 13101. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Evaluating Differences in the Level of Working Conditions between the European Union Member States Using TOPSIS Method. Decis. Mak. Appl. Manag. Eng. 2022, 5, 1–29. [Google Scholar] [CrossRef]
- EU Commission. Poverty and Social Exclusion in Rural Areas; Final Study Report; European Commission: Brussels, Belgium, 2008; 187p. [Google Scholar]
- Puška, A.; Šadić, S.; Maksimović, A.; Stojanović, I. Decision Support Model in the Determination of Rural Touristic Destination Attractiveness in the Brčko District of Bosnia and Herzegovina. Tour. Hosp. Res. 2020, 20, 387–405. [Google Scholar] [CrossRef]
- European Union. European Union Territorial Typologies Manual—Urban-Rural Typology—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Territorial_typologies_manual_-_urban-rural_typology#Results (accessed on 2 June 2023).
- Abrhám, J. Rural Development and Regional Disparities of the New EU Member States. Agric. Econ. 2011, 57, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, J. Networks—A New Paradigm of Rural Development? J. Rural Stud. 2000, 16, 407–419. [Google Scholar] [CrossRef]
- Kovács, A.D.; Gulyás, P.; Farkas, J.Z. Tourism Perspectives in National Parks—A Hungarian Case Study from the Aspects of Rural Development. Sustainability 2021, 13, 12002. [Google Scholar] [CrossRef]
- Oltean, F.D.; Gabor, M.R.; Oltean, F.D.; Gabor, M.R. Wine Tourism—A Sustainable Management Tool for Rural Development and Vineyards: Cross-Cultural Analysis of the Consumer Profile from Romania and Moldova. Agriculture 2022, 12, 1614. [Google Scholar] [CrossRef]
- Camarero, L.; Oliva, J. Thinking in Rural Gap: Mobility and Social Inequalities. Palgrave Commun. 2019 51 2019, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Ralević, P.; Dobrodolac, M.; Marković, D. Using a Nonparametric Technique to Measure the Cost Efficiency of Postal Delivery Branches. Cent. Eur. J. Oper. Res. 2016, 24, 637–657. [Google Scholar] [CrossRef]
- Dobrodolac, M.; Ralević, P.; Švadlenka, L.; Radojičić, V. Impact of a New Concept of Universal Service Obligations on Revenue Increase in the Post of Serbia. Promet Traffic Transp. 2016, 28, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Dobrodolac, M.; Lazarević, D.; Švadlenka, L.; Živanović, M. A Study on the Competitive Strategy of the Universal Postal Service Provider. Technol. Anal. Strateg. Manag. 2016, 28, 935–949. [Google Scholar] [CrossRef] [Green Version]
- Lazarević, D.; Dobrodolac, M.; Švadlenka, L.; Stanivuković, B. A Model for Business Performance Improvement: A Case of the Postal Company. J. Bus. Econ. Manag. 2020, 21, 564–592. [Google Scholar] [CrossRef] [Green Version]
- Milutinović, J.; Marković, D.; Stanivuković, B.; Švadlenka, L.; Dobrodolac, M. A Model for Public Postal Network Reorganization Based on Dea and Fuzzy Approach. Transport 2020, 35, 401–418. [Google Scholar] [CrossRef]
- Ralević, P.; Dobrodolac, M.; Švadlenka, L.; Šarac, D.; Đurić, D. Efficiency and Productivity Analysis of Universal Service Obligation: A Case of 29 Designated Operators in the European Countries. Technol. Econ. Dev. Econ. 2020, 26, 785–807. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.K.; Majumder, S.; Biswas, A.; Prentkovskis, O.; Kar, S.; Skačkauskas, P. A Study on Decision-Making of the Indian Railways Reservation System during COVID-19. J. Adv. Transp. 2022, 2022, 7685375. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Sharma, H.K.; Majumder, S. Criteria Selection of Housing Loan Based on Dominance-Based Rough Set Theory: An Indian Case. J. Risk Financ. Manag. 2023, 16, 309. [Google Scholar] [CrossRef]
- Boskovic, S.; Svadlenka, L.; Jovcic, S.; Dobrodolac, M.; Simic, V.; Bacanin, N. An Alternative Ranking Order Method Accounting for Two-Step Normalization (AROMAN); A Case Study of the Electric Vehicle Selection Problem. IEEE Access 2023, 11, 39496–39507. [Google Scholar] [CrossRef]
- Bošković, S.; Švadlenka, L.; Dobrodolac, M.; Jovčić, S.; Zanne, M. An Extended AROMAN Method for Cargo Bike Delivery Concept Selection. Decis. Mak. Adv. 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Čubranić-Dobrodolac, M.; Jovčić, S.; Bošković, S.; Babić, D. A Decision-Making Model for Professional Drivers Selection: A Hybridized Fuzzy–AROMAN–Fuller Approach. Mathematics 2023, 11, 2831. [Google Scholar] [CrossRef]
- Hamilton, C. Changing Service Provision in Rural Areas and the Possible Impact on Older People: A Case Example of Compulsory Post Office Closures and Outreach Services in England. Soc. Policy Soc. 2016, 15, 387–401. [Google Scholar] [CrossRef]
- Shergold, I.; Parkhurst, G. Transport-Related Social Exclusion amongst Older People in Rural Southwest England and Wales. J. Rural Stud. 2012, 28, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Cabras, I.; Lau, C.K.M. The Availability of Local Services and Its Impact on Community Cohesion in Rural Areas: Evidence from the English Countryside. Local Econ. 2019, 34, 248–270. [Google Scholar] [CrossRef] [Green Version]
- Christiaanse, S.; Haartsen, T. The Influence of Symbolic and Emotional Meanings of Rural Facilities on Reactions to Closure: The Case of the Village Supermarket. J. Rural Stud. 2017, 54, 326–336. [Google Scholar] [CrossRef]
- Ralevic, P.; Dobrodolac, M.; Markovic, D.; Mladenovic, S. The Measurement of Public Postal Operators’ Profit Efficiency by Using Data Envelopment Analysis (DEA): A Case Study of the European Union Member States and Serbia. Eng. Econ. 2015, 26, 3360. [Google Scholar] [CrossRef] [Green Version]
- Filippini, M.; Zola, M. Economies of Scale and Cost Efficiency in the Postal Services: Empirical Evidence from Switzerland. Appl. Econ. Lett. 2006, 12, 437–441. [Google Scholar] [CrossRef]
- Dobrodolac, M.; Švadlenka, L.; Čubranić-Dobrodolac, M.; Čičević, S.; Stanivuković, B. A Model for the Comparison of Business Units. Pers. Rev. 2018, 47, 118–131. [Google Scholar] [CrossRef]
- Klingenberg, J.P.; Bzhilyanskaya, L.Y.; Ravnitzky, M.J. Optimization of the United States Postal Retail Network by Applying GIS and Econometric Tools. In Reforming the Postal Sector in the Face of Electronic Competition; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2013; pp. 118–131. [Google Scholar] [CrossRef]
- Budziewicz-Guźlecka, A.; Drab-Kurowska, A. Problems of Infrastructure Markets with Particular Emphasis on the Postal Market in the Context of Digital Exclusion. Sustainability 2020, 12, 4719. [Google Scholar] [CrossRef]
- Mizutani, F.; Uranishi, S. The Post Office vs. Parcel Delivery Companies: Competition Effects on Costs and Productivity. J. Regul. Econ. 2003, 23, 299–319. [Google Scholar] [CrossRef]
- Matúšková, M.; Madleňáková, L. The Impact of the Electronic Services to the Universal Postal Services. Procedia Eng. 2017, 178, 258–266. [Google Scholar] [CrossRef]
- Neupane, S.; Kyrönlahti, S.; Prakash, K.C.; Siukola, A.; Kosonen, H.; Lumme-Sandt, K.; Nikander, P.; Nygård, C.H. Indicators of Sustainable Employability among Older Finnish Postal Service Employees: A Longitudinal Study of Age and Time Effects. Sustainability 2022, 14, 5729. [Google Scholar] [CrossRef]
- Drašković, D.; Průša, P.; Čičević, S.; Jovčić, S. The Implementation of Digital Ergonomics Modeling to Design a Human-Friendly Working Process in a Postal Branch. Appl. Sci. 2020, 10, 9124. [Google Scholar] [CrossRef]
- Minami, K. Whole Life Appraisal of the Repair and Improvement Work Costs of Post Office Buildings in Japan. Constr. Manag. Econ. 2010, 22, 311–318. [Google Scholar] [CrossRef]
- Neutens, T.; Delafontaine, M.; Schwanen, T.; van de Weghe, N. The Relationship between Opening Hours and Accessibility of Public Service Delivery. J. Transp. Geogr. 2012, 25, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Doble, M. Measuring and Improving Technical Efficiency in UK Post Office Counters Using Data Envelopment Analysis. Ann. Public Coop. Econ. 1995, 66, 31–64. [Google Scholar] [CrossRef]
- Vaishar, A.; Št’astná, M.; Ilaria, M.; Kataishi, R.; Akhavan, M.; Senjyu, T. Accessibility of Services in Rural Areas: Southern Moravia Case Study. Sustainability 2021, 13, 9103. [Google Scholar] [CrossRef]
- Mostarac, K.; Kavran, Z.; Rakić, E. Accessibility of Universal Postal Service According to Access Points Density Criteria: Case Study of Bjelovar-Bilogora County, Croatia. Promet Traffic Transp. 2019, 31, 173–183. [Google Scholar] [CrossRef]
- Mostarac, K.; Mostarac, P.; Kavran, Z.; Šarac, D. Determining Optimal Locations of Postal Access Points Based on Simulated Annealing. Sustainability 2022, 14, 8635. [Google Scholar] [CrossRef]
- Çakır, S.; Perçin, S.; Min, H. Evaluating the Comparative Efficiency of the Postal Services in Oecd Countries Using Context-Dependent and Measure-Specific Data Envelopment Analysis. Benchmarking 2015, 22, 839–856. [Google Scholar] [CrossRef]
- Nebro, A.J.; García-Nieto, J.M.; Berlí, M.; Warchulski, E.; Kozdrowski, S. Applications of Metaheuristics Inspired by Nature in a Specific Optimisation Problem of a Postal Distribution Sector. Appl. Sci. 2022, 12, 9384. [Google Scholar] [CrossRef]
- de Araújo, F.A.; Dos Reis, J.G.M.; da Silva, M.T.; Aktas, E. A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil. Sustainability 2022, 14, 5753. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Mahmutagić, E.; Stević, Ž.; Nunić, Z.; Chatterjee, P.; Tanackov, I. An Integrated Decision-Making Model For Efficency Analysis of the Forklifts in Warehousing Systems. Facta Univ. Ser. Mech. Eng. 2021, 19, 537–553. [Google Scholar] [CrossRef]
- Durmić, E.; Stević, Ž.; Chatterjee, P.; Vasiljević, M.; Tomašević, M. Sustainable Supplier Selection Using Combined FUCOM—Rough SAW Model. Rep. Mech. Eng. 2020, 1, 34–43. [Google Scholar] [CrossRef]
- Chen, S.M.; Lee, L.W. Fuzzy Multiple Attributes Group Decision-Making Based on the Interval Type-2 TOPSIS Method. Expert Syst. Appl. 2010, 37, 2790–2798. [Google Scholar] [CrossRef]
- Zadeh, L.A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Systems. In Introduction and New Directions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 684. [Google Scholar] [CrossRef]
- Lee, L.W.; Chen, S.M. Fuzzy Multiple Attributes Group Decision-Making Based on the Extension of TOPSIS Method and Interval Type-2 Fuzzy Sets. In Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC, Kunming, China, 12–15 July 2008; Volume 6, pp. 3260–3265. [Google Scholar]
- Karnik, N.N.; Mendel, J.M. Centroid of a Type-2 Fuzzy Set. Inf. Sci. 2001, 132, 195–220. [Google Scholar] [CrossRef]
- Ghaleb, A.M.; Kaid, H.; Alsamhan, A.; Mian, S.H.; Hidri, L. Assessment and Comparison of Various MCDM Approaches in the Selection of Manufacturing Process. Adv. Mater. Sci. Eng. 2020, 2020, 4039253. [Google Scholar] [CrossRef]
- Post Office—TheBythams.Org. UK. Available online: http://www.thebythams.org.uk/community/post-office-2/ (accessed on 30 June 2023).
Linguistic Variable | Type-2 Fuzzy Numbers |
---|---|
Very low (VL) | (0, 0, 0, 1; 1, 1), (0, 0, 0, 0.5; 0.9, 0.9) |
Low (L) | (0, 1, 1, 3; 1, 1), (0.5, 1, 1, 2; 0.9, 0.9) |
Medium-low (ML) | (1, 3, 3, 5; 1, 1), (2, 3, 3, 4; 0.9, 0.9) |
Medium (M) | (3, 5, 5, 7; 1, 1), (4, 5, 5, 6; 0.9, 0.9) |
Medium-high (MH) | (5, 7, 7, 9; 1, 1), (6, 7, 7, 8; 0.9, 0.9) |
High (H) | (7, 9, 9, 10; 1, 1), (8, 9, 9, 9.5; 0.9, 0.9) |
Very High (VH) | (9, 10, 10, 10; 1, 1), (0.95, 10, 10, 10; 0.9, 0.9) |
Criterion 1 | Criterion 2 | Criterion 3 | Criterion 4 | Criterion 5 | Criterion 6 | Criterion 7 | |
---|---|---|---|---|---|---|---|
Expert 1 | 3 | 1 | 4 | 6 | 5 | 2 | 7 |
Expert 2 | 3 | 1 | 4 | 7 | 5 | 2 | 6 |
Expert 3 | 4 | 2 | 3 | 7 | 5 | 1 | 6 |
Criterion 1 | Criterion 2 | Criterion 3 | Criterion 4 | Criterion 5 | Criterion 6 | Criterion 7 | |
---|---|---|---|---|---|---|---|
Expert 1 | 2.8 | 1 | 2.9 | 3.5 | 3.2 | 2.1 | 3.9 |
Expert 2 | 1.8 | 1 | 2.4 | 4 | 2.9 | 1.2 | 3.5 |
Expert 3 | 3 | 2 | 2.1 | 6 | 4 | 1 | 4.5 |
Criterion 1 | Criterion 2 | Criterion 3 | Criterion 4 | Criterion 5 | Criterion 6 | Criterion 7 | |
---|---|---|---|---|---|---|---|
Expert 1 | 0.118 | 0.330 | 0.114 | 0.094 | 0.103 | 0.157 | 0.085 |
Expert 2 | 0.151 | 0.271 | 0.113 | 0.068 | 0.094 | 0.226 | 0.078 |
Expert 3 | 0.113 | 0.170 | 0.162 | 0.057 | 0.085 | 0.339 | 0.075 |
Average | 0.127 | 0.257 | 0.129 | 0.073 | 0.094 | 0.241 | 0.079 |
Criteria | Alternatives | Experts | ||
---|---|---|---|---|
E1 | E2 | E3 | ||
C1 | A1 | M | MH | MH |
A2 | MH | H | H | |
A3 | M | ML | M | |
A4 | VH | H | VH | |
A5 | L | ML | ML | |
A6 | VL | L | L | |
C2 | A1 | L | ML | ML |
A2 | M | ML | M | |
A3 | MH | M | M | |
A4 | H | H | VH | |
A5 | ML | ML | ML | |
A6 | MH | M | MH | |
C3 | A1 | L | L | ML |
A2 | VH | H | H | |
A3 | VH | H | VH | |
A4 | H | H | MH | |
A5 | ML | M | M | |
A6 | MH | M | M | |
C4 | A1 | L | L | ML |
A2 | H | H | MH | |
A3 | H | H | MH | |
A4 | VH | H | H | |
A5 | H | H | MH | |
A6 | L | L | ML | |
C5 | A1 | ML | M | M |
A2 | MH | MH | M | |
A3 | ML | M | M | |
A4 | H | MH | H | |
A5 | ML | M | M | |
A6 | MH | M | M | |
C6 | A1 | MH | M | M |
A2 | M | MH | M | |
A3 | ML | M | M | |
A4 | MH | MH | H | |
A5 | ML | M | M | |
A6 | ML | M | ML | |
C7 | A1 | M | MH | MH |
A2 | M | MH | M | |
A3 | ML | M | M | |
A4 | MH | H | H | |
A5 | M | ML | M | |
A6 | ML | M | M |
Criteria | Alternatives | Experts (Average) |
---|---|---|
C1 | A1 | (4.33, 6.33, 6.33, 8.33; 1, 1), (5.33, 6.33, 6.33, 7.33; 0.9, 0.9) |
A2 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A3 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A4 | (8.33, 9.67, 9.67, 10.00; 1, 1), (9.00, 9.67, 9.67, 9.83; 0.9, 0.9) | |
A5 | (0.67, 2.33, 2.33, 4.33; 1, 1), (1.50, 2.33, 2.33, 3.33; 0.9, 0.9) | |
A6 | (0.00, 0.67, 0.67, 2.33; 1, 1), (0.33, 0.67, 0.67, 1.50; 0.9, 0.9) | |
C2 | A1 | (0.67, 2.33, 2.33, 4.33; 1, 1), (1.50, 2.33, 2.33, 3.33; 0.9, 0.9) |
A2 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A3 | (3.67, 5.67, 5.67, 7.67; 1, 1), (4.67, 5.67, 5.67, 6.67; 0.9, 0.9) | |
A4 | (7.67, 9.33, 9.33, 10.00; 1, 1), (8.50, 9.33, 9.33, 9.67; 0.9, 0.9) | |
A5 | (1.00, 3.00, 3.00, 5.00; 1, 1), (2.00, 3.00, 3.00, 4.00; 0.9, 0.9) | |
A6 | (4.33, 6.33, 6.33, 8.33; 1, 1), (5.33, 6.33, 6.33, 7.33; 0.9, 0.9) | |
C3 | A1 | (0.33, 1.67, 1.67, 3.67; 1, 1), (1.00, 1.67, 1.67, 2.67; 0.9, 0.9) |
A2 | (7.67, 9.33, 9.33, 10.00; 1, 1), (8.50, 9.33, 9.33, 9.67; 0.9, 0.9) | |
A3 | (8.33, 9.67, 9.67, 10.00; 1, 1), (9.00, 9.67, 9.67, 9.83; 0.9, 0.9) | |
A4 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A5 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A6 | (3.67, 5.67, 5.67, 7.67; 1, 1), (4.67, 5.67, 5.67, 6.67; 0.9, 0.9) | |
C4 | A1 | (0.33, 1.67, 1.67, 3.67; 1, 1), (1.00, 1.67, 1.67, 2.67; 0.9, 0.9) |
A2 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A3 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A4 | (7.67, 9.33, 9.33, 10.00; 1, 1), (8.50, 9.33, 9.33, 9.67; 0.9, 0.9) | |
A5 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A6 | (0.33, 1.67, 1.67, 3.67; 1, 1), (1.00, 1.67, 1.67, 2.67; 0.9, 0.9) | |
C5 | A1 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) |
A2 | (4.33, 6.33, 6.33, 8.33; 1, 1), (5.33, 6.33, 6.33, 7.33; 0.9, 0.9) | |
A3 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A4 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A5 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A6 | (3.67, 5.67, 5.67, 7.67; 1, 1), (4.67, 5.67, 5.67, 6.67; 0.9, 0.9) | |
C6 | A1 | (3.67, 5.67, 5.67, 7.67; 1, 1), (4.67, 5.67, 5.67, 6.67; 0.9, 0.9) |
A2 | (3.67, 5.67, 5.67, 7.67; 1, 1), (4.67, 5.67, 5.67, 6.67; 0.9, 0.9) | |
A3 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A4 | (5.67, 7.67, 7.67, 9.33; 1, 1), (6.67, 7.67, 7.67, 8.50; 0.9, 0.9) | |
A5 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A6 | (1.67, 3.67, 3.67, 5.67; 1, 1), (2.67, 3.67, 3.67, 4.67; 0.9, 0.9) | |
C7 | A1 | (4.33, 6.33, 6.33, 8.33; 1, 1), (5.33, 6.33, 6.33, 7.33; 0.9, 0.9) |
A2 | (3.67, 5.67, 5.67, 7.67; 1, 1), (4.67, 5.67, 5.67, 6.67; 0.9, 0.9) | |
A3 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A4 | (6.33, 8.33, 8.33, 9.67; 1, 1), (7.33, 8.33, 8.33, 9.00; 0.9, 0.9) | |
A5 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) | |
A6 | (2.33, 4.33, 4.33, 6.33; 1, 1), (3.33, 4.33, 4.33, 5.33; 0.9, 0.9) |
Criteria | Alternatives | Type-2 Fuzzy Numbers—Average Experts’ Answers |
---|---|---|
C1 | A1 | (0.03, 0.04, 0.04, 0.06; 1, 1), (0.03, 0.04, 0.04, 0.05; 0.9, 0.9) |
A2 | (0.04, 0.06, 0.06, 0.07; 1, 1), (0.05, 0.06, 0.06, 0.06; 0.9, 0.9) | |
A3 | (0.02, 0.03, 0.03, 0.04; 1, 1), (0.02, 0.03, 0.03, 0.04; 0.9, 0.9) | |
A4 | (0.05, 0.06, 0.06, 0.07; 1, 1), (0.06, 0.07, 0.07, 0.07; 0.9, 0.9) | |
A5 | (0.00, 0.02, 0.02, 0.03; 1, 1), (0.01, 0.01, 0.01, 0.02; 0.9, 0.9) | |
A6 | (0.00, 0.00, 0.00, 0.02; 1, 1), (0.00, 0.00, 0.00, 0.01; 0.9, 0.9) | |
C2 | A1 | (0.00, 0.02, 0.02, 0.06; 1, 1), (0.00, 0.01, 0.01, 0.03; 0.9, 0.9) |
A2 | (0.02, 0.05, 0.05, 0.09; 1, 1), (0.03, 0.05, 0.05, 0.07; 0.9, 0.9) | |
A3 | (0.04, 0.07, 0.07, 0.11; 1, 1), (0.05, 0.07, 0.07, 0.09; 0.9, 0.9) | |
A4 | (0.10, 0.13, 0.13, 0.14; 1, 1), (0.11, 0.13, 0.13, 0.14; 0.9, 0.9) | |
A5 | (0.01, 0.03, 0.03, 0.07; 1, 1), (0.01, 0.03, 0.03, 0.04; 0.9, 0.9) | |
A6 | (0.05, 0.08, 0.08, 0.12; 1, 1), (0.06, 0.08, 0.08, 0.10; 0.9, 0.9) | |
C3 | A1 | (0.00, 0.01, 0.01, 0.02; 1, 1), (0.00, 0.01, 0.01, 0.01; 0.9, 0.9) |
A2 | (0.05, 0.06, 0.06, 0.07; 1, 1), (0.06, 0.06, 0.06, 0.07; 0.9, 0.9) | |
A3 | (0.05, 0.06, 0.06, 0.07; 1, 1), (0.06, 0.07, 0.07, 0.07; 0.9, 0.9) | |
A4 | (0.04, 0.06, 0.06, 0.07; 1, 1), (0.05, 0.06, 0.06, 0.06; 0.9, 0.9) | |
A5 | (0.01, 0.03, 0.03, 0.04; 1, 1), (0.02, 0.03, 0.03, 0.03; 0.9, 0.9) | |
A6 | (0.02, 0.04, 0.04, 0.05; 1, 1), (0.03, 0.04, 0.04, 0.04; 0.9, 0.9) | |
C4 | A1 | (0.00, 0.01, 0.01, 0.01; 1, 1), (0.00, 0.00, 0.00, 0.01; 0.9, 0.9) |
A2 | (0.02, 0.03, 0.03, 0.04; 1, 1), (0.03, 0.03, 0.03, 0.04; 0.9, 0.9) | |
A3 | (0.02, 0.03, 0.03, 0.04; 1, 1), (0.03, 0.03, 0.03, 0.04; 0.9, 0.9) | |
A4 | (0.03, 0.04, 0.04, 0.04; 1, 1), (0.03, 0.04, 0.04, 0.04; 0.9, 0.9) | |
A5 | (0.02, 0.03, 0.03, 0.04; 1, 1), (0.03, 0.03, 0.03, 0.04; 0.9, 0.9) | |
A6 | (0.00, 0.01, 0.01, 0.01; 1, 1), (0.00, 0.00, 0.00, 0.01; 0.9, 0.9) | |
C5 | A1 | (0.00, 0.01, 0.01, 0.03; 1, 1), (0.00, 0.01, 0.01, 0.02; 0.9, 0.9) |
A2 | (0.01, 0.03, 0.03, 0.04; 1, 1), (0.02, 0.03, 0.03, 0.04; 0.9, 0.9) | |
A3 | (0.00, 0.01, 0.01, 0.03; 1, 1), (0.00, 0.01, 0.01, 0.02; 0.9, 0.9) | |
A4 | (0.03, 0.04, 0.04, 0.05; 1, 1), (0.03, 0.04, 0.04, 0.05; 0.9, 0.9) | |
A5 | (0.00, 0.01, 0.01, 0.03; 1, 1), (0.00, 0.01, 0.01, 0.02; 0.9, 0.9) | |
A6 | (0.01, 0.02, 0.02, 0.04; 1, 1), (0.01, 0.02, 0.02, 0.03; 0.9, 0.9) | |
C6 | A1 | (0.03, 0.07, 0.07, 0.11; 1, 1), (0.04, 0.07, 0.07, 0.09; 0.9, 0.9) |
A2 | (0.03, 0.07, 0.07, 0.11; 1, 1), (0.04, 0.07, 0.07, 0.09; 0.9, 0.9) | |
A3 | (0.01, 0.04, 0.04, 0.08; 1, 1), (0.02, 0.04, 0.04, 0.06; 0.9, 0.9) | |
A4 | (0.07, 0.10, 0.10, 0.14; 1, 1), (0.09, 0.11, 0.11, 0.13; 0.9, 0.9) | |
A5 | (0.01, 0.04, 0.04, 0.08; 1, 1), (0.02, 0.04, 0.04, 0.06; 0.9, 0.9) | |
A6 | (0.00, 0.03, 0.03, 0.07; 1, 1), (0.00, 0.02, 0.02, 0.05; 0.9, 0.9) | |
C7 | A1 | (0.01, 0.02, 0.02, 0.04; 1, 1), (0.01, 0.02, 0.02, 0.03; 0.9, 0.9) |
A2 | (0.01, 0.02, 0.02, 0.03; 1, 1), (0.01, 0.02, 0.02, 0.03; 0.9, 0.9) | |
A3 | (0.00, 0.01, 0.01, 0.02; 1, 1), (0.00, 0.01, 0.01, 0.02; 0.9, 0.9) | |
A4 | (0.02, 0.03, 0.03, 0.04; 1, 1), (0.03, 0.04, 0.04, 0.04; 0.9, 0.9) | |
A5 | (0.00, 0.01, 0.01, 0.02; 1, 1), (0.00, 0.01, 0.01, 0.02; 0.9, 0.9) | |
A6 | (0.00, 0.01, 0.01, 0.02; 1, 1), (0.00, 0.01, 0.01, 0.02; 0.9, 0.9) |
A1 | (0.03, 0.08, 0.08, 0.14; 1, 1), (0.04, 0.08, 0.08, 0.11; 0.9, 0.9) | (0.04, 0.10, 0.10, 0.19; 1, 1), (0.05, 0.09, 0.09, 0.13; 0.9, 0.9) |
A2 | (0.05, 0.09, 0.09, 0.15; 1, 1), (0.06, 0.09, 0.09, 0.13; 0.9, 0.9) | (0.15, 0.22, 0.22, 0.29; 1, 1), (0.17, 0.22, 0.22, 0.25; 0.9, 0.9) |
A3 | (0.01, 0.06, 0.06, 0.11; 1, 1), (0.02, 0.05, 0.05, 0.08; 0.9, 0.9) | (0.14, 0.21, 0.21, 0.28; 1, 1), (0.16, 0.20, 0.20, 0.24; 0.9, 0.9) |
A4 | (0.09, 0.14, 0.14, 0.19; 1, 1), (0.12, 0.15, 0.15, 0.18; 0.9, 0.9) | (0.25, 0.31, 0.31, 0.36; 1, 1), (0.28, 0.32, 0.32, 0.35; 0.9, 0.9) |
A5 | (0.01, 0.06, 0.06, 0.11; 1, 1), (0.02, 0.05, 0.05, 0.08; 0.9, 0.9) | (0.05, 0.12, 0.12, 0.20; 1, 1), (0.06, 0.10, 0.10, 0.15; 0.9, 0.9) |
A6 | (0.01, 0.06, 0.06, 0.11; 1, 1), (0.01, 0.04, 0.04, 0.08; 0.9, 0.9) | (0.08, 0.14, 0.14, 0.22; 1, 1), (0.09, 0.13, 0.13, 0.17; 0.9, 0.9) |
A1 | (0.32, 0.43, 0.43, 0.51; 1, 1), (0.35, 0.42, 0.42, 0.47; 0.9, 0.9) | (0.12, 0.22, 0.22, 0.33; 1, 1), (0.14, 0.20, 0.20, 0.26; 0.9, 0.9) |
A2 | (0.36, 0.45, 0.45, 0.53; 1, 1), (0.39, 0.45, 0.45, 0.50; 0.9, 0.9) | (0.28, 0.37, 0.37, 0.44; 1, 1), (0.31, 0.36, 0.36, 0.40; 0.9, 0.9) |
A3 | (0.23, 0.39, 0.39, 0.48; 1, 1), (0.25, 0.36, 0.36, 0.43; 0.9, 0.9) | (0.27, 0.35, 0.35, 0.43; 1, 1), (0.30, 0.35, 0.35, 0.39; 0.9, 0.9) |
A4 | (0.45, 0.52, 0.52, 0.57; 1, 1), (0.49, 0.53, 0.53, 0.56; 0.9, 0.9) | (0.39, 0.46, 0.46, 0.50; 1, 1), (0.43, 0.47, 0.47, 0.49; 0.9, 0.9) |
A5 | (0.23, 0.39, 0.39, 0.48; 1, 1), (0.25, 0.36, 0.36, 0.43; 0.9, 0.9) | (0.13, 0.24, 0.24, 0.34; 1, 1), (0.16, 0.22, 0.22, 0.28; 0.9, 0.9) |
A6 | (0.21, 0.38, 0.38, 0.48; 1, 1), (0.23, 0.35, 0.35, 0.42; 0.9, 0.9) | (0.18, 0.27, 0.27, 0.37; 1, 1), (0.20, 0.26, 0.26, 0.31; 0.9, 0.9) |
Alternatives | |
---|---|
A1 | 11.52 |
A2 | 23.74 |
A3 | 28.92 |
A4 | 29.87 |
A5 | 18.28 |
A6 | 23.18 |
The Centroid of Type-2 Fuzzy Number | New Ranking Values | Previous Ranking Values | ||
---|---|---|---|---|
A1 | (−0.39, −0.20, −0.20, 0.00; 1, 1), (−0.33, −0.22, −0.22, −0.09; 0.9, 0.9) | −0.18, 0.37 | 0.93 | 11.52 |
A2 | (−0.25, −0.08, −0.08, 0.08; 1, 1), (−0.18, −0.08, −0.08, 0.00; 0.9, 0.9) | −0.08, 0.37 | 0.97 | 23.74 |
A3 | (−0.21, −0.03, −0.03, 0.20; 1, 1), (−0.13, −0.01, −0.01, 0.13; 0.9, 0.9) | −0.03, 0.38 | 0.98 | 28.92 |
A4 | (−0.18, −0.05, −0.05, 0.05; 1, 1), (−0.13, −0.06, −0.06, 0.00; 0.9, 0.9) | −0.05, 0.37 | 0.98 | 29.87 |
A5 | (−0.35, −0.14, −0.14, 0.12; 1, 1), (−0.27, −0.13, −0.13, 0.03; 0.9, 0.9) | −0.13, 0.38 | 0.95 | 18.28 |
A6 | (−0.30, −0.11, −0.11, 0.15; 1, 1), (−0.22, −0.09, −0.09, 0.08; 0.9, 0.9) | −0.09, 0.38 | 0.96 | 23.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolić, I.; Milutinović, J.; Božanić, D.; Dobrodolac, M. Using an Interval Type-2 Fuzzy AROMAN Decision-Making Method to Improve the Sustainability of the Postal Network in Rural Areas. Mathematics 2023, 11, 3105. https://doi.org/10.3390/math11143105
Nikolić I, Milutinović J, Božanić D, Dobrodolac M. Using an Interval Type-2 Fuzzy AROMAN Decision-Making Method to Improve the Sustainability of the Postal Network in Rural Areas. Mathematics. 2023; 11(14):3105. https://doi.org/10.3390/math11143105
Chicago/Turabian StyleNikolić, Ivana, Jelena Milutinović, Darko Božanić, and Momčilo Dobrodolac. 2023. "Using an Interval Type-2 Fuzzy AROMAN Decision-Making Method to Improve the Sustainability of the Postal Network in Rural Areas" Mathematics 11, no. 14: 3105. https://doi.org/10.3390/math11143105
APA StyleNikolić, I., Milutinović, J., Božanić, D., & Dobrodolac, M. (2023). Using an Interval Type-2 Fuzzy AROMAN Decision-Making Method to Improve the Sustainability of the Postal Network in Rural Areas. Mathematics, 11(14), 3105. https://doi.org/10.3390/math11143105