An Improved Dunnett’s Procedure for Comparing Multiple Treatments with a Control in the Presence of Missing Observations
Abstract
:1. Introduction
2. Notations
3. Brief Review of Dunnett’s Test
4. Improved Dunnett’s Procedure for Many-to-One Comparisons with Missing Data
Algorithm 1 Main algorithm |
Input: with missing observations.
Output: Point estimates and pooled confidence intervals for comparisons . |
5. Simulation Study
5.1. Simulation I
5.1.1. Coverage of Confidence Interval
5.1.2. Average Length of Confidence Interval
5.2. Simulation II
6. Application
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dunnett, C.W. A Multiple Comparison Procedure for Comparing Several Treatments with a Control. J. Am. Stat. Assoc. 1955, 50, 1096–1121. [Google Scholar] [CrossRef]
- Passing, H. Exact Simultaneous Comparisons with Control in an r × c Contingency Table. Biom. J. 1984, 26, 643–654. [Google Scholar] [CrossRef]
- Piegorsch, W.W. Multiple Comparisons for Analyzing Dichotomous Response. Biometrics 1991, 47, 45–52. [Google Scholar] [CrossRef]
- Goodman, L.A. Simultaneous confidence intervals for contrasts among multinomial proportions. Ann. Math. Stat. 1964, 35, 716–725. [Google Scholar] [CrossRef]
- Schaarschmidt, F.; Biesheuvel, E.; Hothorn, L.A. Asymptotic Simultaneous Confidence Intervals for Many-to-One Comparisons of Binary Proportions in Randomized Clinical Trials. J. Biopharm. Stat. 2009, 19, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, B. Simultaneous confidence bounds for relative risks in multiple comparisons to control. Stat. Med. 2010, 29, 3232–3244. [Google Scholar] [CrossRef]
- Herberich, E.; Hothorn, T. Dunnett-type-Inference in the frailty Cox model with covariates. Stat. Med. 2012, 31, 45–55. [Google Scholar] [CrossRef]
- Chakraborti, S.; Desu, M.M. Linear rank tests for comparing treatments with a control when data are subject to unequal patterns of censorship. Stat. Neerl. 1991, 45, 227–254. [Google Scholar] [CrossRef]
- Chen, Y.I. Multiple comparisons in carcinogenesis study with right-censored survival data. Stat. Med. 2000, 19, 353–367. [Google Scholar] [CrossRef]
- Wu, S.F. One stage multiple comparisons of k-1 treatment mean lifetimes with the control for exponential distributions under heteroscedasticity. Commun. Stat. Simul. Comput. 2018, 47, 2968–2978. [Google Scholar] [CrossRef]
- Wu, S.F. One stage multiple comparisons with the control for exponential mean lifetimes based on doubly censored samples under heteroscedasticity. Commun. Stat. Simul. Comput. 2021, 50, 1473–1483. [Google Scholar] [CrossRef]
- Chauhan, R.S.; Singh, P.; Kumar, N. Multiple comparisons with a control in direction-mixed families of hypothesis under heteroscedasticity. Stat. Probab. Lett. 2013, 83, 2679–2687. [Google Scholar] [CrossRef]
- Cheung, S.H.; Kwong, K.S.; Chan, W.S.; Leung, S.P. Multiple comparisons with a control in families with both one-sided and two-sided hypotheses. Stat. Med. 2004, 23, 2975–2988. [Google Scholar] [CrossRef] [PubMed]
- Kwong, K.S.; Cheung, S.H.; Holl, B.; Wang, Y. Three p-value consistent procedures for multiple comparisons with a control in direction–mixed families. Stat. Med. 2007, 26, 4253–4272. [Google Scholar] [CrossRef]
- Chauhan, R.S.; Singh, P.; Kumar, N. Simultaneous confidence intervals for comparing several exponential location parameters with control in direction-mixed families. J. Stat. Manag. Syst. 2017, 20, 421–440. [Google Scholar] [CrossRef]
- Gao, J.; Su, F.; Hu, F.; Cheung, S.H. Adaptive treatment allocation for comparative clinical studies with recurrent events data. Biometrics 2020, 76, 183–196. [Google Scholar] [CrossRef]
- Gao, J.; Hu, F.; Cheung, S.H.; Su, P.F. Response-adaptive treatment randomization for multiple comparisons of treatments with recurrentevent responses. Stat. Methods Med. Res. 2022, 31, 1549–1565. [Google Scholar] [CrossRef]
- Liu, L.; Lee, C.-I.C.; Peng, J. Simultaneous confidence bounds in monotone dose–response studies. J. Stat. Plan. Inference 2014, 145, 113–124. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, G.; Liu, X.; Ma, C. Simultaneous confidence interval construction for many-to-one comparisons of proportion differences based on correlated paired data. J. Appl. Stat. 2021, 48, 1442–1456. [Google Scholar] [CrossRef]
- Maharjan, R. Simultaneous Inference with Application to Dose-Response Study; Bowling Green State University: Bowling Green, OH, USA, 2022. [Google Scholar]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; John Wiley & Sons, Inc.: New York, NY, USA, 1987; pp. 11–18, 114, 117, 166–167. [Google Scholar]
- Schafer, J.L. Analysis of Incomplete Multivariate Data; Taylor and Francis: Washington, DC, USA; CRC Press: Boca Raton, FL, USA, 1997; Chapter 1. [Google Scholar]
- Schafer, J.L.; Yucel, R.M. Computational Strategies for Multivariate Linear Mixed-Effects Models with Missing Values. J. Comput. Graph. Stat. 2002, 11, 437–457. [Google Scholar] [CrossRef]
- Rubin, D.B. An overview of multiple imputation. In Proceedings of the Survey Research, Princeton, NJ, USA, 20–22 October 1988; pp. 79–84. [Google Scholar]
- Holland, B.S.; Copenhaver, M.D. Improved Bonferroni-type multiple testing procedures. Psychol. Bull. 1988, 104, 145–149. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Vasilopoulos, T.; Morey, T.E.; Dhatariya, K.; Rice, M.J. Limitations of Significance Testing in Clinical Research. Anesth. Analg. 2016, 122, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Voelkl, B. Multiple testing: Correcting for alpha error inflation with false discovery rate (FDR) or family-wise error rate? Anim. Behav. 2019, 155, 173–177. [Google Scholar] [CrossRef]
- Rubin, D.B. Inference and Missing Data. Biometrika 1976, 63, 581–592. [Google Scholar] [CrossRef]
- Heitjan, D.F.; Little, R.J.A. Multiple Imputation for the Fatal Accident Reporting System. Appl. Stat. 1991, 40, 13–29. [Google Scholar] [CrossRef]
- Schenker, N.; Taylor, J.M.G. Partially parametric techniques for multiple imputation. Comput. Stat. Data Anal. 1996, 22, 425–446. [Google Scholar] [CrossRef]
- Lavori, P.W.; Dawson, R.; Shera, D. A multiple imputation strategy for clinical trials with truncation of patient data. Stat. Med. 1995, 14, 1913–1925. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Alan, G.; Bretz, F. Computation of Multivariate Normal and t Probabilities; Springer: Berlin/Heidelberg, Germany, 2009; Volume 195, pp. 2–4. [Google Scholar]
- Genz, A.; Bretz, F.; Miwa, T.; Mi, X.; Leisch, F.; Scheipl, F.; Hothorn, T. mvtnorm: Multivariate Normal and t Distributions, R package version 1.1-0. 2020.
- Bornkamp, B. Calculating quantiles of noisy distribution functions using local linear regressions. Comput. Stat. 2018, 33, 492–493. [Google Scholar] [CrossRef]
- Burton, A.; Altman, D.G.; Royston, P.; Holder, R.L. The design of simulation studies in medical statistics. Stat. Med. 2006, 25, 4287–4288. [Google Scholar] [CrossRef] [PubMed]
- Bretz, F.; Pinheiro, J.C.; Branson, M. Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 2005, 61, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B., Eds.; Stanford University Press: Palo Alto, CA, USA, 1960; Volume 2, pp. 278–292. [Google Scholar]
- G. E. P. Box. Non-normality and tests on variance. Biometrika 1953, 4, 318–335. [Google Scholar]
- Hsu, J. Multiple Comparisons: Theory and Methods, 1st ed.; Chapman & Hall: London, UK, 1996; p. 4. [Google Scholar]
- Rosner, B. Fundamentals of Biostatistics, 7th ed.; Brooks Cole: Belmont, CA, USA, 2010; p. 546. [Google Scholar]
Multiple Comparison Adjustment | ||
---|---|---|
None | Many-to-One | |
Complete data | Two-sample t test (equal variances) | Dunnett’s Procedure |
Incomplete data | First perform multiple imputation on the incomplete data, then pool the two-sample t test (equal variances) results using Rubin’s rule | First perform multiple imputation on the incomplete data, then use the proposed procedure (equal variances assumption) to produce simultaneous statistical inferences based on multiple imputed datasets |
None Adjustment | Many-to-One Adjustment | |||||
---|---|---|---|---|---|---|
MR | vs. | vs. | Joint | vs. | vs. | Joint |
Scenario I: , , | ||||||
0% | 94.72 | 94.73 | 90.50 | 97.48 | 97.06 | 94.93 |
Imputation using linear regression | ||||||
10% | 94.78 | 94.57 | 90.30 | 96.95 | 97.06 | 94.47 |
20% | 94.52 | 94.53 | 90.07 | 97.14 | 96.94 | 94.48 |
30% | 94.29 | 94.39 | 89.67 | 96.81 | 97.13 | 94.33 |
40% | 94.52 | 94.51 | 89.91 | 96.97 | 97.04 | 94.39 |
Imputation using predictive mean matching method | ||||||
10% | 93.19 | 92.64 | 87.27 | 95.88 | 95.74 | 92.32 |
20% | 90.14 | 89.15 | 81.55 | 93.85 | 93.02 | 88.03 |
30% | 86.30 | 83.46 | 73.34 | 90.68 | 88.60 | 81.27 |
40% | 81.66 | 77.66 | 65.13 | 86.44 | 83.29 | 73.41 |
Imputation using propensity-score method | ||||||
10% | 95.13 | 94.69 | 90.81 | 97.18 | 97.07 | 94.66 |
20% | 95.52 | 94.76 | 91.13 | 97.68 | 97.20 | 95.21 |
30% | 96.10 | 93.85 | 90.66 | 98.05 | 96.46 | 94.79 |
40% | 96.00 | 93.62 | 90.30 | 97.97 | 96.28 | 94.61 |
Scenario II: , , | ||||||
0% | 95.36 | 94.98 | 91.17 | 97.53 | 97.33 | 95.27 |
Imputation using linear regression | ||||||
10% | 95.13 | 94.46 | 90.44 | 97.42 | 97.11 | 94.97 |
20% | 95.27 | 94.73 | 90.90 | 97.37 | 96.94 | 94.80 |
30% | 95.15 | 94.65 | 90.65 | 97.38 | 97.03 | 94.78 |
40% | 95.01 | 94.77 | 90.46 | 97.20 | 96.93 | 94.50 |
Imputation using predictive mean matching method | ||||||
10% | 93.71 | 92.90 | 87.81 | 96.52 | 95.85 | 92.99 |
20% | 90.75 | 89.34 | 82.11 | 94.39 | 93.34 | 88.72 |
30% | 87.02 | 84.55 | 74.83 | 91.04 | 89.12 | 82.06 |
40% | 82.19 | 77.40 | 65.27 | 86.86 | 83.06 | 73.49 |
Imputation using propensity-score method | ||||||
10% | 95.44 | 94.63 | 90.86 | 97.66 | 97.24 | 95.24 |
20% | 95.78 | 94.70 | 91.27 | 97.72 | 97.20 | 95.32 |
30% | 96.20 | 93.53 | 90.41 | 97.95 | 96.29 | 94.66 |
40% | 95.90 | 93.64 | 90.19 | 97.78 | 96.47 | 94.51 |
None | Many-to-One | |||||||
---|---|---|---|---|---|---|---|---|
MR | vs. | ER (%) | vs. | ER (%) | vs. | ER (%) | vs. | ER (%) |
Scenario I: , , | ||||||||
0% | 2.374 | — | 2.374 | — | 2.675 | — | 2.675 | — |
Imputation using linear regression | ||||||||
10% | 2.458 | 3.54 | 2.48 | 4.47 | 2.777 | 3.81 | 2.803 | 4.79 |
20% | 2.591 | 9.14 | 2.649 | 11.58 | 2.928 | 9.46 | 2.992 | 11.85 |
30% | 2.751 | 15.88 | 2.866 | 20.72 | 3.107 | 16.15 | 3.234 | 20.90 |
40% | 2.95 | 24.26 | 3.166 | 33.36 | 3.329 | 24.45 | 3.564 | 33.23 |
Imputation using propensity-score method | ||||||||
10% | 2.446 | 3.03 | 2.47 | 4.04 | 2.763 | 3.29 | 2.793 | 4.41 |
20% | 2.557 | 7.71 | 2.656 | 11.88 | 2.887 | 7.93 | 3.003 | 12.26 |
30% | 2.669 | 12.43 | 2.962 | 24.77 | 3.005 | 12.34 | 3.347 | 25.12 |
40% | 2.799 | 17.90 | 3.18 | 33.95 | 3.148 | 17.68 | 3.587 | 34.09 |
Scenario II: , , | ||||||||
0% | 2.374 | — | 2.375 | — | 2.675 | — | 2.675 | — |
Imputation using linear regression | ||||||||
10% | 2.459 | 3.58 | 2.484 | 4.59 | 2.78 | 3.93 | 2.805 | 4.86 |
20% | 2.595 | 9.31 | 2.652 | 11.66 | 2.932 | 9.61 | 2.994 | 11.93 |
30% | 2.757 | 16.13 | 2.872 | 20.93 | 3.114 | 16.41 | 3.239 | 21.08 |
40% | 2.954 | 24.43 | 3.166 | 33.31 | 3.333 | 24.60 | 3.563 | 33.20 |
Imputation using propensity-score method | ||||||||
10% | 2.454 | 3.37 | 2.479 | 4.38 | 2.771 | 3.59 | 2.8 | 4.67 |
20% | 2.572 | 8.34 | 2.671 | 12.46 | 2.901 | 8.45 | 3.017 | 12.79 |
30% | 2.69 | 13.31 | 2.974 | 25.22 | 3.023 | 13.01 | 3.363 | 25.72 |
40% | 2.822 | 18.87 | 3.196 | 34.57 | 3.169 | 18.47 | 3.608 | 34.88 |
Multiple (PS/RE) | |||||
---|---|---|---|---|---|
Naive | Single | Bonferroni | Holm’s | Proposed | |
N = 80 | Scenario I: , , | ||||
Joint Test (Family-wise error rate) | |||||
4.83 | 20.88 | 3.71/4.83 | 3.71/4.83 | 4.28/5.06 | |
Scenario II: , , | |||||
vs. (Power to reject : ) | |||||
69.15 | 87.28 | 63.49/67.62 | 72.22/76.04 | 65.46/69.2 | |
vs. (Power to reject : ) | |||||
89.5 | 97.35 | 83.39/88.69 | 85.92/90.51 | 84.3/89.55 | |
Joint Test (Power to reject : , ) | |||||
65.29 | 85.87 | 58.17/63.41 | 69.42/73.65 | 60.42/65.21 | |
N = 120 | Scenario I: , , | ||||
Joint Test (Family-wise error rate) | |||||
4.69 | 20.87 | 4.48/4.79 | 4.48/4.79 | 4.73/4.94 | |
Scenario II: , , | |||||
vs. (Power to reject : ) | |||||
86.03 | 95.47 | 84.05/85.63 | 89.22/90.73 | 84.53/86.01 | |
vs. (Power to reject : ) | |||||
97.62 | 99.61 | 93.54/97.43 | 95.31/98.07 | 93.71/97.51 | |
Joint Test (Power to reject : , ) | |||||
84.89 | 95.2 | 80.09/84.34 | 87.02/90.09 | 80.81/84.82 |
Data | Dose | Response |
---|---|---|
Original | 0.00 | NA, 0.14, −0.02, NA, NA, 0.36, 0.31, NA, 0.62, NA, −0.31, |
−0.45, −0.20, NA, NA, NA, −0.16, NA, 0.81, NA | ||
0.05 | NA, NA, −0.07, 0.58, 0.96, NA, −0.00, 0.52, −0.36, NA, NA, | |
0.44, −0.02, 0.37, 1.53, NA, 0.37, 1.01, 0.28, 0.99 | ||
0.20 | 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63, 0.53, | |
0.42, 1.23, 1.87, 1.06, 0.35, NA, 0.48, 0.57, 1.01 | ||
0.60 | 1.17, NA, 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91, | |
NA, NA, NA, NA, 1.60, 1.58, NA, NA, 2.16, 0.69 | ||
1.00 | 2.25, NA, 1.25, 1.86, NA, 1.20, 1.97, 0.63, NA, NA, 0.89, | |
0.56, 0.73, NA, 0.49, NA, NA, NA, 1.13, 0.95 | ||
First imputed | 0.00 | (−0.45), 0.14, −0.02, (−0.45), (−0.45), 0.36, 0.31, (0.31), 0.62, (−0.45), |
−0.31, −0.45, −0.20, (−0.31), (−0.31), (0.36), −0.16, (0.36), 0.81, (0.62) | ||
0.05 | (0.28), (0.44), −0.07, 0.58, 0.96, (1.01), −0.00, 0.52, −0.36, (1.01), | |
(−0.02), 0.44, −0.02, 0.37, 1.53, (−0.02), 0.37, 1.01, 0.28, 0.99 | ||
0.20 | 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63, | |
0.53, 0.42, 1.23, 1.87, 1.06, 0.35, (0.05), 0.48, 0.57, 1.01 | ||
0.60 | 1.17, (1.17), 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91, | |
(0.91), (1.17), (0.90), (1.17), 1.60, 1.58, (1.58), (1.78), 2.16, 0.69 | ||
1.00 | 2.25, (1.97), 1.25, 1.86, (0.49), 1.20, 1.97, 0.63, (1.20), (1.25), | |
0.89, 0.56, 0.73, (1.97), 0.49, (2.25), (0.49), (1.13), 1.13, 0.95 | ||
Second imputed | 0.00 | (−0.20), 0.14, −0.02, (0.81), (0.81), 0.36, 0.31, (−0.31), 0.62, (−0.31), |
−0.31, −0.45, −0.20, (−0.31), (0.81), (−0.16), −0.16, (0.62), 0.81, (0.81) | ||
0.05 | (0.96), (−0.36), −0.07, 0.58, 0.96, (1.53), −0.00, 0.52, −0.36, (0.28), | |
(0.96), 0.44, −0.02, 0.37, 1.53, (−0.02), 0.37, 1.01, 0.28, 0.99 | ||
0.20 | 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63, | |
0.53, 0.42, 1.23, 1.87, 1.06, 0.35, (0.63), 0.48, 0.57, 1.01 | ||
0.60 | 1.17, (2.16), 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91, | |
(1.39), (1.58), (1.39), (0.23), 1.60, 1.58, (0.90), (0.69), 2.16, 0.69 | ||
1.00 | 2.25, (0.89), 1.25, 1.86, (0.73), 1.20, 1.97, 0.63, (1.86), (1.25), | |
0.89, 0.56, 0.73, (0.73), 0.49, (1.25), (0.95), (2.25), 1.13, 0.95 | ||
Third imputed | 0.00 | (0.14), 0.14, −0.02, (0.31), (0.81), 0.36, 0.31, (−0.02), 0.62, (−0.20), |
−0.31, −0.45, −0.20, (−0.20), (0.36), (0.14), −0.16, (0.81), 0.81, (−0.20) | ||
0.05 | (0.99), (0.96), −0.07, 0.58, 0.96, (0.99), −0.00, 0.52, −0.36, (1.53), | |
(−0.36), 0.44, −0.02, 0.37, 1.53, (1.01), 0.37, 1.01, 0.28, 0.99 | ||
0.20 | 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63, | |
0.53, 0.42, 1.23, 1.87, 1.06, 0.35, (0.42), 0.48, 0.57, 1.01 | ||
0.60 | 1.17, (1.78), 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91, | |
(0.23), (1.78), (1.78), (1.58), 1.60, 1.58, (1.58), (1.78), 2.16, 0.69 | ||
1.00 | 2.25, (1.86), 1.25, 1.86, (1.25), 1.20, 1.97, 0.63, (1.20), (1.13), | |
0.89, 0.56, 0.73, (0.49), 0.49, (0.49), (1.20), (1.13), 1.13, 0.95 |
Methods | Dose Comparison | Point Estimate of () | 95% Confidence Interval |
---|---|---|---|
Proposed | vs. 0 | ||
method | vs. 0 | ||
vs. 0 | |||
vs. 0 | |||
Dunnett’s | vs. 0 | ||
procedure | vs. 0 | ||
with naive | vs. 0 | ||
case deletion | vs. 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Zhou, J.; Liang, B. An Improved Dunnett’s Procedure for Comparing Multiple Treatments with a Control in the Presence of Missing Observations. Mathematics 2023, 11, 3233. https://doi.org/10.3390/math11143233
Jiang W, Zhou J, Liang B. An Improved Dunnett’s Procedure for Comparing Multiple Treatments with a Control in the Presence of Missing Observations. Mathematics. 2023; 11(14):3233. https://doi.org/10.3390/math11143233
Chicago/Turabian StyleJiang, Wenqing, Jiangjie Zhou, and Baosheng Liang. 2023. "An Improved Dunnett’s Procedure for Comparing Multiple Treatments with a Control in the Presence of Missing Observations" Mathematics 11, no. 14: 3233. https://doi.org/10.3390/math11143233
APA StyleJiang, W., Zhou, J., & Liang, B. (2023). An Improved Dunnett’s Procedure for Comparing Multiple Treatments with a Control in the Presence of Missing Observations. Mathematics, 11(14), 3233. https://doi.org/10.3390/math11143233