Distributional Chaos and Sensitivity for a Class of Cyclic Permutation Maps
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (1)
- φ is -chaotic;
- (2)
- is -chaotic;
- (3)
- is -chaotic for some ;
- (4)
- is -chaotic for any .
- (1)
- φ is Li–Yorke sensitive;
- (2)
- is Li–Yorke sensitive for some .
- (1)
- φ is sensitive;
- (2)
- is sensitive for some .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.Y.; Yorke, J.A. Period three implies chaos. Am. Math. Mon. 1975, 82, 985–992. [Google Scholar] [CrossRef]
- Schweizer, B.; Smital, J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 1994, 344, 737–754. [Google Scholar] [CrossRef]
- Oprocha, P.; Wilczynski, P. Shift spaces and distributional chaos. Chaos Solit. Fract. 2007, 31, 347–355. [Google Scholar] [CrossRef]
- Smital, J.; Stefankova, M. Distributional chaos for triangular maps. Chaos Solit. Fract. 2004, 21, 1125–1128. [Google Scholar] [CrossRef]
- Pikula, R. On some notions of chaos in dimension zero. Colloq. Math. 2007, 107, 167–177. [Google Scholar] [CrossRef]
- Wang, L.D.; Huang, G.F.; Huan, S.M. Distributional chaos in a sequence. Nonlinear Anal. 2007, 67, 2131–2136. [Google Scholar] [CrossRef]
- Puu, T.; Sushko, I. Oligopoly Dynamics: Models and Tools; Springer: New York, NY, USA, 2002. [Google Scholar]
- Canovas, J.S.; Ruiz Marin, M. Chaos on MPE-sets of duopoly games. Chaos Solit. Fract. 2004, 19, 179–183. [Google Scholar] [CrossRef]
- Jean-Pierre, A.; Chen, L.X.; Désilles, A. Cournot maps for intercepting evader evolutions by a pursuer. Dyn. Games Appl. 2015, 5, 275–296. [Google Scholar]
- Yua, W.S.; Yu, Y. The stability of Bayesian Nash equilibrium of dynamic Cournot duopoly model with asymmetric information. Commun Nonlinear Sci. Numer. Sim. 2018, 63, 101–116. [Google Scholar] [CrossRef]
- Dana, R.A.; Montrucchio, L. Dynamic complexity in duopoly games. J. Econ. Theory 1986, 44, 40–56. [Google Scholar] [CrossRef]
- Lu, T.X.; Zhu, P.Y. Further discussion on chaos in duopoly games. Chaos Solit. Fract. 2013, 52, 45–48. [Google Scholar] [CrossRef]
- Askar, S.S. On the dynamics of Cournot duopoly game with governmental taxes. Complexity 2022, 2022, 5195337. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Zhou, W.; Chu, T.; Li, W.N. Complex dynamic analysis of the duopoly game under management delegation. J. Shandong Univ. 2021, 56, 32–45. [Google Scholar]
- Canovas, J.S. Chaos in duopoly games. Nonlinear Stud. 2000, 7, 97–104. [Google Scholar]
- Du, J.G.; Fan, Y.Q.; Sheng, Z.H.; Hou, Y.Z. Dynamics analysis and chaos control of a duopoly game with heterogeneous players and output limiter. Econ. Model. 2013, 33, 507–516. [Google Scholar] [CrossRef]
- Li, R.S.; Wang, H.Q.; Zhao, Y. Kato’s chaos in duopoly games. Chaos Solit. Fract. 2016, 84, 69–72. [Google Scholar] [CrossRef]
- Linero Bas, A.; Soler Lopez, G. A note on the dynamics of cyclically permuted direct product maps. Topol. Appl. 2016, 203, 147–158. [Google Scholar] [CrossRef]
- Linero Bas, A.; Soler Lopez, G. A splitting result on transitivity for a class of n-dimensional maps. Nonlinear Dyn. 2016, 84, 163–169. [Google Scholar] [CrossRef]
- Askar, S.S.; Alshamrani, A.M.; Alnowibet, K. The arising of cooperation in Cournot duopoly games. Appl. Math. Comput. 2016, 273, 535–542. [Google Scholar] [CrossRef]
- Franke, J.E.; Yakubu, A.-A. Attenuant cycles in periodically forced discrete-time age-structured population models. J. Math. Anal. Appl. 2006, 316, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Li, R.S.; Lu, T.X. The topological entropy of cyclic permutation maps and some chaotic properties on their MPE sets. Complexity 2020, 2020, 9379628. [Google Scholar] [CrossRef]
- Akin, E.; Kolyada, S. Li-Yorke sensitivity. Nonlinearity 2003, 16, 1421–1433. [Google Scholar] [CrossRef]
- Li, R.S.; Shi, Y.M. Stronger gorms of sensitivity for measure-preserving maps and semiflows on probability spaces. Abstr. Appl. Anal. 2014, 2014, 769523. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Anwar, W.; Li, R.; Lu, T.; Mo, Z. Distributional Chaos and Sensitivity for a Class of Cyclic Permutation Maps. Mathematics 2023, 11, 3310. https://doi.org/10.3390/math11153310
Zhao Y, Anwar W, Li R, Lu T, Mo Z. Distributional Chaos and Sensitivity for a Class of Cyclic Permutation Maps. Mathematics. 2023; 11(15):3310. https://doi.org/10.3390/math11153310
Chicago/Turabian StyleZhao, Yu, Waseem Anwar, Risong Li, Tianxiu Lu, and Zhiwen Mo. 2023. "Distributional Chaos and Sensitivity for a Class of Cyclic Permutation Maps" Mathematics 11, no. 15: 3310. https://doi.org/10.3390/math11153310
APA StyleZhao, Y., Anwar, W., Li, R., Lu, T., & Mo, Z. (2023). Distributional Chaos and Sensitivity for a Class of Cyclic Permutation Maps. Mathematics, 11(15), 3310. https://doi.org/10.3390/math11153310