A Parameterized Multi-Splitting Iterative Method for Solving the PageRank Problem
Abstract
:1. Introduction
2. The Inner–Outer Method
3. The Parameterized MSI Iteration Method
Algorithm 1 PMSI method |
Input: Parameters P, q, v, , , ; Output: x.
|
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gleich, D.-F.; Gray, A.-P.; Greif, C.; Lau, T. An inner-outer iteration for computing PageRank. SIAM J. Sci. Comput. 2010, 32, 349–371. [Google Scholar] [CrossRef]
- Gu, C.-Q.; Xie, F.; Zhang, K. A two-step matrix splitting iteration for computing PageRank. J. Comput. Appl. Math. 2015, 278, 19–28. [Google Scholar] [CrossRef]
- Xie, Y.-J.; Ma, C.-F. A relaxed two-step splitting iteration method for computing PageRank. J. Comput. Appl. Math. 2018, 37, 221–233. [Google Scholar] [CrossRef]
- Gu, C.-Q.; Wang, L. On the multi-splitting iteration method for computing PageRank. J. Comput. Appl. Math. 2013, 42, 479–490. [Google Scholar] [CrossRef]
- Tian, Z.-L.; Li, X.-J.; Liu, Z.-Y. A general multi-step matrix splitting iteration method for computing PageRank. Filomat 2021, 35, 679–706. [Google Scholar] [CrossRef]
- Tian, Z.-L.; Zhang, Y.; Wang, J.-X.; Gu, C.-Q. Several relaxed iteration methods for computing PageRank. J. Comput. Appl. Math. 2021, 388, 21. [Google Scholar]
- Mendes, I.; Vasconcelos, P. Pagerank computation with maaor and lumping methods. Math. Comput. Sci. 2018, 12, 129–141. [Google Scholar] [CrossRef]
- Wu, G.; Wei, Y.-M. A power-Arnoldi algorithm for computing PageRank. Numer. Linear Algebra Appl. 2007, 14, 521–546. [Google Scholar] [CrossRef]
- Wu, G.; Wei, Y.-M. An Arnoldi-extrapolation algorithm for computing PageRank. J. Comput. Appl. Math. 2010, 234, 3196–3212. [Google Scholar] [CrossRef] [Green Version]
- Pu, B.-Y.; Huang, T.-Z.; Wen, C. A preconditioned and extrapolation-accelerated GMRES method for PageRank. Appl. Math. Lett. 2014, 37, 95–100. [Google Scholar] [CrossRef]
- Tian, M.-Y.; Zhang, Y.; Wang, Y.-D.; Tian, Z.-L. A general multi-splitting iteration method for computing PageRank. Comput. Appl. Math. 2019, 38, 60. [Google Scholar]
- Chen, X.-D.; Li, S.-Y. A generalized two-step splitting iterative method modified with the multi-step power method for computing PageRank. J. Numer. Methods Comput. Appl. 2018, 39, 243–252. (In Chinese) [Google Scholar]
- Tian, Z.-L.; Liu, X.-Y.; Wang, Y.-D.; Wen, P.-H. The modified matrix splitting iteration method for computing PageRank problem. Filomat 2019, 33, 725–740. [Google Scholar] [CrossRef]
- Gu, C.-Q.; Nie, Y.; Wang, J.-B. Arnoldi-PIO algorithm for PageRank. J. Shanghai Univ. Nat. Sci. 2017, 23, 555–562. (In Chinese) [Google Scholar]
- Qiu, Z.-H.; Gu, C.-Q. A GMRES-RPIO algorithm for computing PageRank problem. J. Numerical Math. J. Chin. Univ. 2018, 40, 331–345. [Google Scholar]
- Gu, C.-Q.; Wang, W.-W. An Arnoldi-MSI algorithm for computing PageRank problems. Numer. Math. J. Chin. Univ. 2016, 38, 257–268. (In Chinese) [Google Scholar]
- Gu, C.-Q.; Shao, C.-C. A GMRES-in/out algorithm for computing PageRank problems. J. Shanghai Univ. Nat. Sci. 2017, 23, 179–184. (In Chinese) [Google Scholar]
- Gu, X.-M.; Lei, S.-L.; Zhang, K.; Shen, Z.-L.; Wen, C.; Carpentieri, B. A Hessenberg-type algorithm for computing PageRank problems. Numer. Algorithms 2022, 89, 1845–1863. [Google Scholar] [CrossRef]
- Xu, W.-K.; Chen, X.-D. A Modified Multi-Splitting Iterative Method With the Restarted GMRES to Solve the PageRank Problem. Appl. Math. Mech. 2022, 43, 330–340. (In Chinese) [Google Scholar]
- Huang, N.; Ma, C.-F. Parallel multi-splitting iteration methods based on M-splitting for the PageRank problem. Appl. Math. Comput. 2015, 271, 337–343. [Google Scholar]
- Wu, G.; Zhang, Y.; Wei, Y.-M. Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem. J. Sci. Comput. 2013, 57, 74–104. [Google Scholar] [CrossRef]
- Tan, X.-Y. A new extrapolation method for PageRank computations. J. Comput. Appl. Math. 2017, 313, 383–392. [Google Scholar] [CrossRef]
- Wen, C.; Hu, Q.-Y.; Pu, B.-Y.; Huang, Y.-Y. Acceleration of an adaptive generalized Arnoldi method for computing PageRank. AIMS Math. 2021, 6, 893–907. [Google Scholar] [CrossRef]
- Guo, P.-C.; Gao, S.-C.; Guo, X.-X. A modified Newton method for multilinear PageRank. Taiwan. J. Math. 2018, 22, 1161–1171. [Google Scholar] [CrossRef]
- Pu, B.-Y.; Wen, C.; Hu, Q.-Y. A multi-power and multi-splitting inner-outer iteration for PageRank computation. Open Math. 2020, 18, 1709–1718. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Huang, T.-Z.; Wen, C.; Shen, Z.-L. FOM accelerated by an extrapolation method for solving PageRank problems. J. Comput. Appl. Math. 2016, 296, 397–409. [Google Scholar]
Size | |||
---|---|---|---|
wb-cs-stanford | 9914 × 9914 | 2,312,497 | 0.291 × |
amazon0312 | 400,727 × 400,727 | 3,200,440 | 1.993 × |
IO | MSI | PMSI | |||
---|---|---|---|---|---|
IT (MV) | 536 | 270 (541) | 228 (457) | ||
0.98 | CPU | 0.1261 | 0.1268 | 0.1079 | 14.90% |
IT (MV) | 1096 | 537 (1075) | 417 (835) | ||
0.99 | CPU | 0.2151 | 0.2274 | 0.1648 | 27.52% |
IT (MV) | 2168 | 1095 (2191) | 962 (1525) | ||
0.995 | CPU | 0.7280 | 0.3819 | 0.2942 | 22.96% |
IT (MV) | 3577 | 1806 (3613) | 1213 (2427) | ||
0.997 | CPU | 0.6380 | 0.5954 | 0.4350 | 26.93% |
IT (MV) | 5450 | 2698 (5397) | 1663 (3327) | ||
0.998 | CPU | 0.9354 | 0.8669 | 0.5862 | 32.37% |
IO | MSI | PMSI | |||
---|---|---|---|---|---|
IT (MV) | 367 | 178 (357) | 170 (341) | ||
0.98 | CPU | 7.3867 | 6.8073 | 6.5658 | 3.54% |
IT (MV) | 733 | 363 (727) | 292 (585) | ||
0.99 | CPU | 15.7108 | 14.1045 | 12.0670 | 14.44% |
IT (MV) | 1436 | 723 (1447) | 5110 (1021) | ||
0.995 | CPU | 30.1137 | 29.4107 | 21.2650 | 27.69% |
IT (MV) | 2507 | 1164 (2329) | 717 (1435) | ||
0.997 | CPU | 30.1137 | 48.6659 | 27.8410 | 42.79% |
IT (MV) | 3630 | 1863 (3727) | 911 (1823) | ||
0.998 | CPU | 90.7846 | 75.3888 | 37.6927 | 50.00% |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|---|---|---|
0.1 | 418 (837) | 410 (821) | 419 (839) | 419 (839) | 414 (829) | 422 (845) | 415 (831) | 417 (835) | 415 (831) |
0.3 | 416 (833) | 415 (831) | 418 (837) | 417 (835) | 420 (841) | 415 (831) | 426 (853) | 422 (845) | 417 (835) |
0.5 | 412 (825) | 420 (841) | 415 (831) | 416 (833) | 425 (851) | 411 (823) | 426 (853) | 424 (569) | 418 (837) |
0.7 | 418 (837) | 414 (829) | 417 (837) | 414 (829) | 419 (839) | 416 (833) | 412 (825) | 419 (839) | 417 (835) |
0.9 | 420 (841) | 422 (845) | 428 (857) | 420 (841) | 424 (849) | 422 (845) | 416 (833) | 417 (835) | 412 (825) |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|---|---|---|
0.1 | 293 (587) | 275 (551) | 262 (525) | 302 (605) | 284 (569) | 269 (539) | 275 (551) | 277 (555) | 262 (525) |
0.3 | 262 (525) | 265 (531) | 294 (589) | 262 (525) | 263 (527) | 303 (607) | 271 (543) | 269 (539) | 258 (517) |
0.5 | 281 (563) | 257 (535) | 269 (539) | 308 (617) | 256 (513) | 276 (553) | 303 (607) | 284 (569) | 278 (557) |
0.7 | 322 (665) | 275 (551) | 303 (607) | 255 (511) | 301 (603) | 272 (545) | 269 (539) | 314 (629) | 264 (529) |
0.9 | 259 (517) | 276 (553) | 274 (549) | 270 (541) | 251 (503) | 274 (549) | 272 (545) | 272 (545) | 255 (511) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Hu, L.; Ma, C. A Parameterized Multi-Splitting Iterative Method for Solving the PageRank Problem. Mathematics 2023, 11, 3320. https://doi.org/10.3390/math11153320
Xie Y, Hu L, Ma C. A Parameterized Multi-Splitting Iterative Method for Solving the PageRank Problem. Mathematics. 2023; 11(15):3320. https://doi.org/10.3390/math11153320
Chicago/Turabian StyleXie, Yajun, Lihua Hu, and Changfeng Ma. 2023. "A Parameterized Multi-Splitting Iterative Method for Solving the PageRank Problem" Mathematics 11, no. 15: 3320. https://doi.org/10.3390/math11153320
APA StyleXie, Y., Hu, L., & Ma, C. (2023). A Parameterized Multi-Splitting Iterative Method for Solving the PageRank Problem. Mathematics, 11(15), 3320. https://doi.org/10.3390/math11153320