An Overview of Kriging and Cokriging Predictors for Functional Random Fields
Abstract
:1. Introduction
2. Kriging and Cokriging Prediction for Stationary Functional Random Fields
2.1. Context
2.2. Standard Kriging for Spatially Correlated Functional Data
2.3. Continuous Temporal Fluctuating Interpolation for Functional Data
- (i)
- The expected value of is consistent across locations. In more specific terms, we have for every location j, where is a location-independent constant vector.
- (ii)
- The covariance matrix depends solely on the relative distance or difference between locations i and j, rather than their absolute positions.
2.4. Cokriging Prediction Based on Observations of Stationary Functional Random Fields
- Parameters
- Variables
2.5. Holistic Functional Kriging Approach
3. Kriging Prediction for Non-Stationary Functional Random Fields
3.1. Formulation for Kriging of Geospatial Functional Observations
3.2. Residual Kriging and External Drift for Spatially Correlated Functional Data
3.3. R Software and Packages of Spatial Statistics
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramsay, J.; Silverman, B. Functional Data Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Christakos, G. Modern Spatiotemporal Geostatistics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ripley, B.D. Spatial Statistics; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Cressie, N. Statistics for Spatial Sata; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Goulard, M.; Voltz, M. Geostatistical interpolation of curves: A case study in soil science. In Geostatistics Tróia’92; Springer: Dordrecht, The Netherlands, 1993; Volume 1, pp. 805–816. [Google Scholar]
- Ignaccolo, R.; Mateu, J.; Giraldo, R. Kriging with external drift for functional data for air quality monitoring. Stoch. Environ. Res. Risk Assess. 2014, 28, 1171–1186. [Google Scholar]
- Menafoglio, A.; Secchi, P.; Dalla Rosa, M. A universal kriging predictor for spatially dependent functional data of a Hilbert space. Electron. J. Stat. 2013, 7, 2209–2240. [Google Scholar]
- Menafoglio, A.; Grujic, O.; Caers, J. Universal kriging of functional data: Trace-variography vs cross-variography? Application to gas forecasting in unconventional shales. Spat. Stat. 2016, 15, 39–55. [Google Scholar]
- Mateu, J.; Giraldo, R. (Eds.) Geostatistical Functional Data Analysis; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Christakos, G. Modern Spatiotemporal Geostatistics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Christakos, G.; Olea, R.A.; Serre, M.L.; Yu, H.-L.; Wang, L.-L. Interdisciplinary Public Health Reasoning and Epidemic Modelling: The Case of Black Death; Springer: New York, NY, USA, 2002. [Google Scholar]
- Christakos, G.; Hristopulos, D.T.; Bogaert, P. Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus. Stoch. Environ. Res. Risk Assess. 2000, 14, 245–262. [Google Scholar]
- Christakos, G. Physical Geography, Geosystems and Spatiotemporal Geostatistics; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Christakos, G. Environmental Health Modelling: An Introductory Manual; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Christakos, G. Analysis of Environmental Data using Neural Networks. Environ. Sci. Technol. 1970, 4, 110–117. [Google Scholar]
- Christakos, G.; Serre, M.L.; Demyanov, V. Neural Network Residual Analysis of the Spatial Estimation of Radioactivity. Stoch. Environ. Res. Risk Assess. 2001, 15, 209–231. [Google Scholar]
- Wu, J.; He, X.; Christakos, G. Quantitative Integration of Spatiotemporal Data Sources in Modern Geosciences. Adv. Geosci. 2021, 56, 183–201. [Google Scholar]
- Strandberg, J.; de Luna, S.; Mateu, J. A Comparison of Spatiotemporal and Functional Kriging Approaches; Springer: New York, NY, USA, 2022. [Google Scholar]
- Cortes, D.L.; Camacho-Tamayo, J.H.; Giraldo, R. Spatial prediction of soil infiltration using functional geostatistics. AUC Geographica 2018, 53, 149–155. [Google Scholar]
- Garcia-Papani, F.; Uribe-Opazo, M.A.; Leiva, V.; Aykroyd, R.G. Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch. Environ. Res. Risk Assess. 2017, 31, 105–124. [Google Scholar]
- Dabo-Niang, S.; Ferraty, F.; Monestiez, P.; Nerini, D. A cokriging method for spatial functional data with applications in oceanology. In Functional and Operatorial Statistics; Physica-Verlag: Heidelberg, Germany, 2008; pp. 237–242. [Google Scholar]
- Giraldo, R.; Herrera, L.; Leiva, V. Cokriging prediction using as a secondary variable a functional random field with application in environmental pollution. Mathematics 2020, 8, 1305. [Google Scholar]
- Azevedo, L. Model reduction in geostatistical seismic inversion with functional data analysis in seismic inversion. Geophysics 2022, 87, M1–M11. [Google Scholar]
- Dabo-Niang, S.; Ternynck, C.; Thiam, B.; Yao, A.F. Nonparametric statistical analysis of spatially distributed functional data. In Geostatistical Functional Data Analysis; Mateu, J., Giraldo, R., Eds.; Springer: New York, NY, USA, 2022; pp. 175–210. [Google Scholar]
- Montero, J.M.; Fernández-Avilés, G. Functional kriging prediction of pollution series: The geostatistical alternative for spatially-fixed data. Estud. Econ. Apl. 2015, 33, 145–174. [Google Scholar]
- Giraldo, R.; Delicado, P.; Mateu, J. Ordinary kriging for function-valued spatial data. Environ. Ecol. Stat. 2011, 18, 411–426. [Google Scholar]
- Giraldo, R.; Delicado, P.; Mateu, J. Continuous time-varying kriging for spatial prediction of functional data: An environmental application. J. Agric. Biol. Environ. Stat. 2010, 15, 66–82. [Google Scholar]
- Fernández-Pascual, R.M.; Espejo, R.; Ruiz-Medina, M.D. Moment and Bayesian wavelet regression from spatially correlated functional data. Stoch. Environ. Res. Risk Assess. 2016, 30, 523–557. [Google Scholar]
- Bouzebda, S.; Soukarieh, I. Non-parametric conditional U-processes for locally stationary functional random fields under stochastic sampling design. Mathematics 2023, 11, 16. [Google Scholar]
- Adler, R.J.; Taylor, J.E. Random Fields and Geometry; Springer: New York, NY, USA, 2007. [Google Scholar]
- García-Pérez, A. On robustness for spatio-temporal data. Mathematics 2023, 10, 1785. [Google Scholar]
- Griffith, D.A. Spatial autocorrelation and unorthodox random variables: The uniform distribution. Chil. J. Stat. 2022, 13, 133–153. [Google Scholar]
- Jelsema, C.M.; Paul, R.; McKean, J.W. Robust estimation of reduced rank models to large spatial datasets. REVSTAT Stat. J. 2020, 18, 203–221. [Google Scholar]
- McCord, M.; Lo, D.; Davis, P.; McCord, J.; Hermans, L.; Bidanset, P. Applying the geostatistical eigenvector spatial filter approach into regularized regression for improving prediction accuracy for mass appraisal. Appl. Sci. 2022, 12, 10660. [Google Scholar]
- Alvo, M.; Mu, J. COVID-19 data analysis using Bayesian models and nonparametric geostatistical models. Mathematics 2023, 11, 1359. [Google Scholar]
- Wackernagel, H. Cokriging versus kriging in regionalized multivariate data analysis. Geoderma 1994, 62, 83–92. [Google Scholar]
- Nerini, D.; Monestiez, P.; Manté, C. Cokriging for spatial functional data. J. Multivar. Anal. 2010, 101, 409–418. [Google Scholar]
- Giraldo, R.; Delicado, P.; Mateu, J. Spatial prediction of a scalar variable based on data of a functional random field. Comun. Estadística 2017, 10, 315–344. [Google Scholar]
- Franco-Viloria, M.; Ignacollo, R. Universal, Residual and External Drift Functional Kriging. In Geostatistical Functional Data Analysis; Mateu, J., Giraldo, R., Eds.; Springer: New York, NY, USA, 2015; pp. 55–72. [Google Scholar]
- Caballero, W.; Giraldo, R.; Mateu, J. A universal kriging approach for spatial functional data. Stoch. Environ. Res. Risk Assess. 2013, 27, 1553–1563. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 2 August 2023).
- Pebesma, E.J.; Bivand, R.S. Classes and methods for spatial data in R. R News 2005, 5, 9–13. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat R package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar]
- Ramsay, J.O.; Hooker, G.; Graves, S. Functional Data Analysis with R and MATLAB; Springer: New York, NY, USA, 2009. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Ribeiro, M.; Azevedo, L.; Pereira, M.J. EpiGeostats: An R Package to Facilitate Visualization of Geostatistical Disease Risk Maps. Math. Geosci. 2023, 1–17. [Google Scholar]
- Valakas, G.; Modis, K. GeoSim: An R-package for pluri-Gaussian simulation and co-simulation between categorical and continuous variables. Appl. Comput. Geosc. 2023, 19, 100130. [Google Scholar]
- Slaets, J.I.; Boeddinghaus, R.S.; Piepho, H.P. Linear mixed models and geostatistics for designed experiments in soil science: Two entirely different methods or two sides of the same coin? Eur. J. Soil Sci. 2021, 72, 47–68. [Google Scholar]
- Cappello, C.; De Iaco, S.; Posa, D. covatest: An R package for selecting a class of space-time covariance functions. J. Stat. Softw. 2020, 94, 1–42. [Google Scholar]
- Tolosana-Delgado, R.; Mueller, U. Geostatistics for compositional data with R; Springer: New York, NY, USA, 2021. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2008. [Google Scholar]
- Bivand, R. R packages for analyzing spatial data: A comparative case study with areal data. Geogr. Anal. 2022, 54, 488–518. [Google Scholar]
- Anderson, S.C.; Ward, E.J.; English, P.A.; Barnett, L.A. sdmTMB: An R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. bioRxiv 2022. [Google Scholar] [CrossRef]
- Martinez, S.; Giraldo, R.; Leiva, V. Birnbaum-Saunders functional regression models for spatial data. Stoch. Environ. Res. Risk Assess. 2019, 33, 1765–1780. [Google Scholar]
- Garcia-Papani, F.; Leiva, V.; Ruggeri, F.; Uribe-Opazo, M.A. Kriging with external drift in a Birnbaum-Saunders geostatistical model. Stoch. Environ. Res. Risk Assess. 2018, 32, 1517–1530. [Google Scholar]
- Sanchez, L.; Leiva, V.; Galea, M.; Saulo, H. Birnbaum-Saunders quantile regression models with application to spatial data. Mathematics 2020, 8, 1000. [Google Scholar]
- Kotz, S.; Leiva, V.; Sanhueza, A. Two new mixture models related to the inverse Gaussian distribution. Methodol. Comput. Appl. Probab. 2010, 12, 199–212. [Google Scholar]
- Leiva, V.; Sanchez, L.; Galea, M.; Saulo, H. Global and local diagnostic analytics for a geostatistical model based on a new approach to quantile regression. Stoch. Environ. Res. Risk Assess. 2020, 34, 1457–1471. [Google Scholar]
- Leiva, V.; Rojas, E.; Galea, M.; Sanhueza, A. Diagnostics in Birnbaum-Saunders accelerated life models with an application to fatigue data. Appl. Stoch. Models Bus. Ind. 2014, 30, 114–128. [Google Scholar]
- Giraldo, R.; Leiva, V.; Christakos, G. Leverage and Cook distance in regression with geostatistical data: Methodology, simulation, and applications related to geographical information. Int. J. Geogr. Inf. Sci. 2021, 37, 607–633. [Google Scholar]
Aspect/Concept | Description/Details | Significance | Challenges Addressed |
---|---|---|---|
Stationarity evaluation | It assesses stability across the spatial domain | It is essential for the right kriging method selection | Accurate assessment of functional processes’ stationarity |
Spatial prediction methodologies | It gives a comprehensive review of methods under both stationary and non-stationary conditions | It provides integrated view tailored to stationarity conditions | Challenges posed by different stationarity conditions |
Applications | It ranges from environmental monitoring to biomedical research | It facilitates informed decisions in various domains | Capturing accurate spatial dependence and functional variability |
Practical implications | It facilitates informed decisions in environmental management and resource allocation | It enhances practical applications | Promoting the understanding of space-time-functional variability interplay |
Further advancements | It stimulates innovative techniques and approaches | It broadens the scope of functional geostatistics | Complex spatial patterns and functional variations |
Contribution to spatial statistics | It gives broader implications beyond functional geostatistics | It filters understanding of spatial statistics | Interplay between space, time, and functionality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giraldo, R.; Leiva, V.; Castro, C. An Overview of Kriging and Cokriging Predictors for Functional Random Fields. Mathematics 2023, 11, 3425. https://doi.org/10.3390/math11153425
Giraldo R, Leiva V, Castro C. An Overview of Kriging and Cokriging Predictors for Functional Random Fields. Mathematics. 2023; 11(15):3425. https://doi.org/10.3390/math11153425
Chicago/Turabian StyleGiraldo, Ramón, Víctor Leiva, and Cecilia Castro. 2023. "An Overview of Kriging and Cokriging Predictors for Functional Random Fields" Mathematics 11, no. 15: 3425. https://doi.org/10.3390/math11153425
APA StyleGiraldo, R., Leiva, V., & Castro, C. (2023). An Overview of Kriging and Cokriging Predictors for Functional Random Fields. Mathematics, 11(15), 3425. https://doi.org/10.3390/math11153425