Consumer Sentiment and Luxury Behavior in the United States before and after COVID-19: Time Trends and Persistence Analysis
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Unit Root Methods
3.2. ARFIMA (p, d, q) Model
3.3. FCVAR Model
3.4. Wavelet Analysis
4. Empirical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keynes, J.M. The General Theory of Employment, Interest, and Money; Harbinger: New York, NY, USA, 1936. [Google Scholar]
- Schumpeter, J.A. Business Cycles; McGraw-Hill: New York, NY, USA, 1939; Volume 1, pp. 161–174. [Google Scholar]
- Friedman, M.; Schwartz, A.J. A Monetary History of the United States, 1867–1960; Princeton University Press: Princeton, NJ, USA, 2008; Volume 14. [Google Scholar]
- Galbraith, J.K. Breve Historia de la Euforia Financiera; Ariel: Barcelona, Spain, 1991. [Google Scholar]
- Kaytaz, M.; Gul, M.C. Consumer response to economic crisis and lessons for marketers: The Turkish experience. J. Bus. Res. 2014, 67, 2701–2706. [Google Scholar] [CrossRef]
- Sarmento, M.; Marques, S.; Galan-Ladero, M. Consumption dynamics during recession and recovery: A learning journey. J. Retail. Consum. Serv. 2019, 50, 226–234. [Google Scholar] [CrossRef]
- Bernanke, B.S. Irreversibility, uncertainty, and cyclical investment. Q. J. Econ. 1983, 98, 85–106. [Google Scholar] [CrossRef]
- Reinhart, C.M.; Rogoff, K.S. Is the 2007 US sub-prime financial crisis so different? An international historical comparison. Am. Econ. Rev. 2008, 98, 339–344. [Google Scholar] [CrossRef]
- Sneath, J.Z.; Lacey, R.; Kennett-Hensel, P.A. Coping with a natural disaster: Losses, emotions, and impulsive and compulsive buying. Mark. Lett. 2009, 20, 45–60. [Google Scholar] [CrossRef]
- Kennett-Hensel, P.A.; Sneath, J.Z.; Lacey, R. Liminality and consumption in the aftermath of a natural disaster. J. Consum. Mark. 2012, 29, 52–63. [Google Scholar] [CrossRef]
- Raggio, R.D.; Leone, R.P. Chasing brand value: Fully leveraging brand equity to maximise brand value. J. Brand Manag. 2009, 16, 248–263. [Google Scholar] [CrossRef]
- Halliburton, C.; Kellner, K. Are Luxury Brands Really Immune to Financial Recession. In A Comparative Empirical Investigation of Luxury and Non-Luxury Brands in the Downturn. 2012. Available online: www.marketing-trends-congress.com (accessed on 28 July 2023).
- Som, A.; Blanckaert, C. The Road to Luxury: The Evolution, Markets, and Strategies of Luxury Brand Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kapferer, J.N.; Bastien, V. The specificity of luxury management: Turning marketing upside down. J. Brand Manag. 2009, 16, 311–322. [Google Scholar] [CrossRef]
- Sheth, J. New areas of research in marketing strategy, consumer behavior, and marketing analytics: The future is bright. J. Mark. Theory Pract. 2021, 29, 3–12. [Google Scholar] [CrossRef]
- Gu, S.; Ślusarczyk, B.; Hajizada, S.; Kovalyova, I.; Sakhbieva, A. Impact of the COVID-19 pandemic on online consumer purchasing behavior. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2263–2281. [Google Scholar] [CrossRef]
- Omar, N.A.; Nazri, M.A.; Ali, M.H.; Alam, S.S. The panic buying behavior of consumers during the COVID-19 pandemic: Examining the influences of uncertainty, perceptions of severity, perceptions of scarcity, and anxiety. J. Retail. Consum. Serv. 2021, 62, 102600. [Google Scholar] [CrossRef]
- Pan, T.; Shu, F.; Kitterlin-Lynch, M.; Beckman, E. Perceptions of cruise travel during the COVID-19 pandemic: Market recovery strategies for cruise businesses in North America. Tour. Manag. 2021, 85, 104275. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P. Luxury consumption amidst the COVID-19 pandemic. Mark. Intell. Plan. 2023, 41, 62–82. [Google Scholar] [CrossRef]
- Choi, Y.H.; Lee, K.H. Changes in consumer perception of fashion products in a pandemic—Effects of COVID-19 spread. Res. J. Costume Cult. 2020, 28, 285–298. [Google Scholar] [CrossRef]
- Grechi, D.; Pezzetti, R.; Pavione, E.; Gazzola, P. The Impact of COVID-19 on the Fashion Industry: A Generation Survey. In Proceedings of the STRATEGICA 2021—Shaping the Future of Business and Economy, Bucharest, Romania, 21–22 October 2022; pp. 285–296. [Google Scholar]
- Xie, J.; Youn, C. How the luxury fashion brand adjust to deal with the COVID-19. Int. J. Costume Fash. 2020, 20, 50–60. [Google Scholar] [CrossRef]
- Chung, M.; Ko, E.; Joung, H.; Kim, S.J. Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res. 2020, 117, 587–595. [Google Scholar] [CrossRef]
- Holmqvist, J.; Wirtz, J.; Fritz, M.P. Luxury in the digital age: A multi-actor service encounter perspective. J. Bus. Res. 2020, 121, 747–756. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, R.; Luo, J.; Liu, M.J. Redefining “masstige” luxury consumption in the post-COVID era. J. Bus. Res. 2022, 143, 239–254. [Google Scholar] [CrossRef]
- Pencarelli, T.; Ali Taha, V.; Škerháková, V.; Valentiny, T.; Fedorko, R. Luxury products and sustainability issues from the perspective of young Italian consumers. Sustainability 2019, 12, 245. [Google Scholar] [CrossRef]
- Zagórski, K.; McDonnell, J.S. “Consumer Confidence” Indexes as social indicators. Soc. Indic. Res. 1995, 36, 227–246. [Google Scholar] [CrossRef]
- Song, M.; Shin, K.S. Forecasting economic indicators using a consumer sentiment index: Survey-based versus text-based data. J. Forecast. 2019, 38, 504–518. [Google Scholar] [CrossRef]
- Jain, P.K.; Pamula, R.; Srivastava, G. A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput. Sci. Rev. 2021, 41, 100413. [Google Scholar] [CrossRef]
- Zagorski, K. Hope factor, inequality, and legitimacy of systemic transformations: The case of Poland. Communist Post-Communist Stud. 1994, 27, 357–376. [Google Scholar] [CrossRef]
- McDonnell, J.S. The Differential Effects of Community Perceptions of Inflation and Unemployment on Consumer Confidence: An International Assessment; University of Melbourne, IAESR: Melbourne, VIC, Australia, 1994. [Google Scholar]
- Pickering, J.F. The Acquisition of Consumer Durables—A Cross-Sectional Investigation; Associated Business Programs: London, UK, 1977. [Google Scholar]
- Alessa, A.A.; Alotaibie, T.M.; Elmoez, Z.; Alhamad, H.E. Impact of COVID-19 on entrepreneurship and consumer behaviour: A case study in Saudi Arabia. J. Asian Financ. Econ. Bus. 2021, 8, 201–210. [Google Scholar]
- Tran, L.T.T. Managing the effectiveness of e-commerce platforms in a pandemic. J. Retail. Consum. Serv. 2021, 58, 102287. [Google Scholar] [CrossRef]
- Xayrullaevna, S.N.; Pakhritdinovna, K.D.; Anvarovna, B.G. Digitalization of the economy during a pandemic: Accelerating the pace of development. J. Crit. Rev. 2020, 7, 2491–2498. [Google Scholar]
- Im, J.; Kim, H.; Miao, L. CEO letters: Hospitality corporate narratives during the COVID-19 pandemic. Int. J. Hosp. Manag. 2021, 92, 102701. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Elliot, G.; Rothenberg, T.J.; Stock, J.H. Efficient tests for an autoregressive unit root. Econometrica 1996, 64, 813–836. [Google Scholar] [CrossRef]
- Adenstedt, R.K. On large-sample estimation for the mean of a stationary random sequence. Ann. Stat. 1974, 2, 1095–1107. [Google Scholar] [CrossRef]
- Granger, C.W.; Joyeux, R. An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1980, 1, 15–29. [Google Scholar] [CrossRef]
- Granger, C.W. Long memory relationships and the aggregation of dynamic models. J. Econom. 1980, 14, 227–238. [Google Scholar] [CrossRef]
- Granger, C.W. Some properties of time series data and their use in econometric model specification. J. Econom. 1981, 16, 121–130. [Google Scholar] [CrossRef]
- Hosking, J.R. Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 1984, 20, 1898–1908. [Google Scholar] [CrossRef]
- Diebold, F.X.; Rudebush, G.D. On the power of Dickey-Fuller tests against fractional alternatives. Econ. Lett. 1991, 35, 155–160. [Google Scholar] [CrossRef]
- Hassler, U.; Wolters, J. On the power of unit root tests against fractional alternatives. Econ. Lett. 1994, 45, 1–5. [Google Scholar] [CrossRef]
- Lee, D.; Schmidt, P. On the power of the KPSS test of stationarity against fractionally-integrated alternatives. J. Econom. 1996, 73, 285–302. [Google Scholar] [CrossRef]
- Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 1973, 60, 255–265. [Google Scholar] [CrossRef]
- Akaike, H. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 1979, 66, 237–242. [Google Scholar] [CrossRef]
- Johansen, S.; Nielsen, M.O. Likelihood inference for a fractionally cointegrated vector autoregressive model. Econometrica 2012, 80, 2667–2732. [Google Scholar] [CrossRef]
- Zhou, W.X. Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys. Rev. E 2008, 77, 066211. [Google Scholar] [CrossRef]
- Podobnik, B.; Stanley, H.E. Detrended cross-correlation analysis: A newmethod for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.F.; Zhou, W.X. Detrending moving average algorithm for multifractals. Phys. Rev. E 2010, 82, 011136. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Q.; Zhou, W.X. Multifractal detrending moving-average cross-correlation analysis. Phys. Rev. E 2011, 84, 016106. [Google Scholar] [CrossRef]
- Monge, M.; Gil-Alana, L.A. Spatial crude oil production divergence and crude oil price behaviour in the United States. Energy 2021, 232, 121034. [Google Scholar] [CrossRef]
- Monge, M.; Poza, C.; Borgia, S. A proposal of a suspicion of tax fraud indicator based on Google trends to foresee Spanish tax revenues. Int. Econ. 2022, 169, 1–12. [Google Scholar] [CrossRef]
- Monge, M. Bunker fuel, commodity prices and shipping market indices following the COVID-19 pandemic. A time-frequency analysis. Int. Econ. 2022, 172, 29–39. [Google Scholar] [CrossRef]
- Monge, M.; Rojo, M.F.R.; Gil-Alana, L.A. The impact of geopolitical risk on the behavior of oil prices and freight rates. Energy 2023, 269, 126779. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Soares, M.J. The continuous wavelet transform: Moving beyond uni- and bivariate analysis. J. Econ. Surv. 2014, 28, 344–375. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Azevedo, N.; Soares, M.J. Using wavelets to decompose the time-frequency effects of monetary policy. Phys. A Stat. Mech. Appl. 2008, 387, 2863–2878. [Google Scholar] [CrossRef]
- Sowell, F. Maximum likelihood estimation of stationary univariate fractionally integrated time series models. J. Econom. 1992, 53, 165–188. [Google Scholar] [CrossRef]
- Weinberger, M.F.; Wallendorf, M. Intracommunity gifting at the intersection of contemporary moral and market economies. J. Consum. Res. 2012, 39, 74–92. [Google Scholar] [CrossRef]
- Markhvida, M.; Walsh, B.; Hallegatte, S.; Baker, J. Quantification of disaster impacts through household well-being losses. Nat. Sustain. 2020, 3, 538–547. [Google Scholar] [CrossRef]
- Martin, A.; Markhvida, M.; Hallegatte, S.; Walsh, B. Socio-economic impacts of COVID-19 on household consumption and poverty. Econ. Disasters Clim. Chang. 2020, 4, 453–479. [Google Scholar] [CrossRef]
- Hall, M.C.; Prayag, G.; Fieger, P.; Dyason, D. Beyond panic buying: Consumption displacement and COVID-19. J. Serv. Manag. 2020, 32, 113–128. [Google Scholar] [CrossRef]
- Savelli, E. Role of brand management of the luxury fashion brand in the global economic crisis: A case study of Aeffe group. J. Glob. Fash. Mark. 2011, 2, 170–179. [Google Scholar] [CrossRef]
- D’Arpizio, C.; Levato, F.; Fenili, S.; Colacchio, F.; Prete, F. Luxury after COVID-19: Changed for (the) Good; Bain & Company: Boston, MA, USA, 2020. [Google Scholar]
- Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D’(C) D’(C). In Engineering Mathematics II: Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 337–353. [Google Scholar]
- Yang, L.; Su, H.; Zhong, C.; Meng, Z.; Luo, H.; Li, X.; Tang, Y.Y.; Lu, Y. Hyperspectral image classification using wavelet transform-based smooth ordering. Int. J. Wavelets Multiresolution Inf. Process. 2019, 17, 1950050. [Google Scholar] [CrossRef]
- Guariglia, E.; Guido, R.C. Chebyshev Wavelet Analysis. J. Funct. Spaces 2022, 2022, 5542054. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, Y.Y.; Zhou, J. A framework of adaptive multiscale wavelet decomposition for signals on undirected graphs. IEEE Trans. Signal Process. 2019, 67, 1696–1711. [Google Scholar] [CrossRef]
process is short memory | |
process is long memory | |
is covariance stationary | |
is nonstationary | |
is mean reverting | |
is not mean reverting |
ADF | PP | KPSS | |||||
---|---|---|---|---|---|---|---|
(i) | (ii) | (iii) | (ii) | (iii) | (ii) | (iii) | |
Original Data | |||||||
Consumer Sentiment | −1.1776 | −2.3556 | −2.5834 | −1.8882 | −2.1751 | 1.0441 | 0.6348 |
S&P Global Luxury Index | 0.3653 | −1.1097 | −2.922 | −1.1529 | −3.0762 | 4.2981 | 0.1902 |
Before COVID-19 | |||||||
Consumer Sentiment | −0.7182 | −2.7378 | −2.6408 | −2.3794 | −2.2876 | 1.0815 | 0.8833 |
S&P Global Luxury Index | 0.6615 | −0.923 | −2.4503 | −0.9626 | −2.5643 | 3.9953 | 0.2517 |
After COVID-19 | |||||||
Consumer Sentiment | −0.9442 | −0.0163 | −1.4899 | −1.0651 | −1.8857 | 0.7051 | 0.2296 |
S&P Global Luxury Index | 0.2907 | −2.0361 | 0.1709 | −1.2629 | 0.1109 | 0.6285 | 0.2365 |
Data Analyzed | Sample Size (Days) | Model Selected | d | Std. Error | Interval | I(d) |
---|---|---|---|---|---|---|
Original Time Series | ||||||
Consumer Sentiment | 295 | ARFIMA (2, d, 2) | 0.95 | 0.193 | [0.63, 1.27] | I(1) |
S&P Global Luxury Index | 295 | ARFIMA (2, d, 2) | 0.22 | 0.193 | [−0.10, 0.54] | I(0) |
Before COVID-19 | ||||||
Consumer Sentiment | 266 | ARFIMA (2, d, 2) | 0.95 | 0.108 | [0.77, 1.13] | I(1) |
S&P Global Luxury Index | 266 | ARFIMA (2, d, 2) | 0.93 | 0.054 | [0.84, 1.02] | I(1) |
After COVID-19 | ||||||
Consumer Sentiment | 29 | ARFIMA (1, d, 2) | 0.79 | 0.436 | [0.07, 1.50] | I(1) |
S&P Global Luxury Index | 29 | ARFIMA (1, d, 1) | 1.10 | 0.319 | [0.57, 1.62] | I(1) |
Direction of Causality | Lags 1 | Prob. | Decision | Outcome |
---|---|---|---|---|
d_CS → d_Luxury | 2 | 0.0434 | Reject null | Consumer sentiment causes luxury sector behavior |
d_Luxury → d_CS | 2 | 0.4660 | Do not reject null | Luxury sector does not cause consumer sentiment |
Cointegrating Equation Beta | |||
---|---|---|---|
Consumer Sentiment | Global Luxury Index | ||
Panel I: Consumer Sentiment vs. Global Luxury Index | ) | 1.000 | 0.016 |
Panel II: Consumer Sentiment vs. Global Luxury Index “After COVID-19” | ) | 1.000 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos Ceron, B.; Monge, M. Consumer Sentiment and Luxury Behavior in the United States before and after COVID-19: Time Trends and Persistence Analysis. Mathematics 2023, 11, 3612. https://doi.org/10.3390/math11163612
Marcos Ceron B, Monge M. Consumer Sentiment and Luxury Behavior in the United States before and after COVID-19: Time Trends and Persistence Analysis. Mathematics. 2023; 11(16):3612. https://doi.org/10.3390/math11163612
Chicago/Turabian StyleMarcos Ceron, Berta, and Manuel Monge. 2023. "Consumer Sentiment and Luxury Behavior in the United States before and after COVID-19: Time Trends and Persistence Analysis" Mathematics 11, no. 16: 3612. https://doi.org/10.3390/math11163612
APA StyleMarcos Ceron, B., & Monge, M. (2023). Consumer Sentiment and Luxury Behavior in the United States before and after COVID-19: Time Trends and Persistence Analysis. Mathematics, 11(16), 3612. https://doi.org/10.3390/math11163612