Representations by Beurling Systems
Abstract
:1. Introduction
1.1. Preliminary Results, Definitions, and Notations
1.2. Classes of Weight Functions
2. On Beurling Systems
2.1. A Remarkable System of Polynomials
3. Weighted Spaces
3.1. On the Dual Space of
3.2. Summation Basis
3.3. The System in the Space
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazarian, K.S. Some open problems related to generalized Fourier series. In Special Functions, Partial Differential Equations and Harmonic Analysis; Springer Proceedings in Mathematics & Statistics; Georgakis, C., Stokolos, A.M., Urbina, W., Eds.; Springer: Cham, Switzerland, 2014; Volume 108, pp. 105–113. [Google Scholar]
- Luzin, N.N. Integral and Trigonometric Series; Gostekhizdat: Moscow, Russia, 1951. (In Russian) [Google Scholar]
- Kazarian, K.S. Summability of generalized Fourier series and Dirichlet’s problem in Lp(dμ) and weighted Hp-spaces (p>1). Anal. Math. 1987, 13, 173–197. [Google Scholar] [CrossRef]
- Beurling, A. On two problems concerning linear transformations in Hilbert space. Acta Math. 1949, 81, 239–255. [Google Scholar] [CrossRef]
- Duren, P.L. Theory of Hp Spaces; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Kazarian, K.S. Multiliers of the trigonometric system. J. Math. Sci. 2023. [Google Scholar] [CrossRef]
- Nevanlinna, F.; Nevanlinna, R. Über die Eigenschafen analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie. Acta Soc. Sci. Fenn. 1922, 50, 5. [Google Scholar]
- Hoffman, K. Banach Spaces of Analytic Functions; Prentice-Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Koosis, P. Introduction to Hp Spaces; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Zygmund, A. Trigonometric Series; v. 1 and 2; Cambridge University Press: Cambridge, UK, 1959. [Google Scholar]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Szegö, G. Über die Randwerte analytischer Funktionen. Math. Ann. 1921, 84, 232–244. [Google Scholar] [CrossRef]
- Bary, N.K. A Treatise on Trigonometric Series; GIFML, Moscow (1961); Pregamon Press: New York, NY, USA, 1964. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces I; Springer: Cham, Switzerland, 1977. [Google Scholar]
- Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 1972, 165, 207–226. [Google Scholar] [CrossRef]
- Muckenhoupt, B. Two weight function norm inequalities for the Poisson integral. Trans. Am. Math. Soc. 1975, 210, 225–231. [Google Scholar] [CrossRef]
- Rosenblum, M. Summability of Fourier series in Lp(dμ). Trans. Am. Math. Soc. 1962, 105, 32–42. [Google Scholar]
- Banach, S. Théorie des Opérations Linéaires; Chelsea Publ. Co.: New York, NY, USA, 1955. [Google Scholar]
- Hunt, R.; Muckenhoupt, B.; Wheeden, R.L. Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 1973, 176, 227–251. [Google Scholar] [CrossRef]
- Kazarian, K.S. On bases and unconditional bases in the spaces Lp(dμ),1≤p<∞. Studia Math. 1982, 71, 227–249. [Google Scholar]
- Strömberg, J.-O.; Torchinsky, A. Weighted Hady Spaces; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1989; Volume 1381. [Google Scholar]
- Singer, I. Bases in Banach Spaces II; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazarian, K. Representations by Beurling Systems. Mathematics 2023, 11, 3663. https://doi.org/10.3390/math11173663
Kazarian K. Representations by Beurling Systems. Mathematics. 2023; 11(17):3663. https://doi.org/10.3390/math11173663
Chicago/Turabian StyleKazarian, Kazaros. 2023. "Representations by Beurling Systems" Mathematics 11, no. 17: 3663. https://doi.org/10.3390/math11173663
APA StyleKazarian, K. (2023). Representations by Beurling Systems. Mathematics, 11(17), 3663. https://doi.org/10.3390/math11173663