Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model
Abstract
:1. Introduction
- An extended decomposition scheme was introduced to extract the illumination and reflectance components from the observed image, which contributed to a better description of the prior regularization of illumination and reflectance.
- A spatially adaptive weight was proposed for the illumination and the reflectance regularization, which retained useful details and effectively removed the noise in the image-enhancement process.
- Several popular low-light datasets were evaluated to display improved performance in low-illumination conditions in contrast to other competing methods.
2. Related Work
2.1. Retinex-Based Methods
2.2. Extended Decomposition Method
2.3. Joint Enhancement and Denoising
3. Proposed Model and Algorithm
3.1. Model Formulation
3.2. Weight Setting
3.3. Numerical Algorithm
- Subproblem 1: Updating while fixing .
- Subproblem 2: Updating while fixing .
Algorithm 1 Alternating the updating algorithm for the minimization problem (4) |
Input: Choose a group of initial parameters and variables and generate new iteration via the following scheme. 1: Transform input image I into the logarithmic domain; 2: For k = 1, 2……, perform the following: Update according to (12); Update according to (13); Update according to (14); 3: End the iteration when the stopping criterion is satisfied; Output: the decomposition results and . |
4. Implementation Details and Experimental Results
4.1. Experiment Setting
4.2. Decomposition Results and Discussions
4.3. Enhancement Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozano-Vázquez, L.V.; Miura, J.; Rosales-Silva, A.J.; Luviano-Juárez, A.; Mújica-Vargas, D. Analysis of Different Image Enhancement and Feature Extraction Methods. Mathematics 2022, 10, 2407. [Google Scholar] [CrossRef]
- Yuan, N.; Zhao, X.; Sun, B.; Han, W.; Tan, J.; Duan, T.; Gao, X. Low-Light Image Enhancement by Combining Transformer and Convolutional Neural Network. Mathematics 2023, 11, 1657. [Google Scholar] [CrossRef]
- Muslim, H.S.M.; Khan, S.A.; Hussain, S.; Jamal, A.; Qasim, H.S.A. A knowledge-based image enhancement and denoising approach. Comput. Math. Organ. Theory 2019, 25, 108–121. [Google Scholar] [CrossRef]
- Devi, Y.A.S. Ranking Based Classification in Hyperspectral Images. J. Eng. Appl. Sci. 2018, 13, 1606–1612. [Google Scholar]
- Li, L.; Wang, R.; Wang, W.; Gao, W. A low-light image enhancement method for both denoising and contrast enlarging. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3730–3734. [Google Scholar]
- Dong, J.; Pan, J.; Ren, J.S.; Lin, L.; Tang, J.; Yang, M.H. Learning spatially variant linear representation models for joint filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 8355–8370. [Google Scholar] [CrossRef]
- Xu, J.; Hou, Y.; Ren, D.; Liu, L.; Zhu, F.; Yu, M.; Wang, H.; Shao, L. Star: A structure and texture aware Retinex model. IEEE Trans. Image Process. 2020, 29, 5022–5037. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Ling, H. Lime: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2016, 26, 982–993. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Guo, K.; Jia, K.; Hu, B.; Tao, D. A joint intrinsic-extrinsic prior model for Retinex. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4000–4009. [Google Scholar]
- Wang, Y.; Pang, Z.F.; Duan, Y.; Chen, K. Image Retinex based on the nonconvex TV-type regularization. Inverse Probl. Imaging 2020, 15, 1381–1407. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Y.; Zeng, T. Retinex-based variational framework for low-light image enhancement and denoising. IEEE Trans. Multimed. 2022, 1–9. [Google Scholar] [CrossRef]
- Jia, X.; Feng, X.; Wang, W.; Zhang, L. An extended variational image decomposition model for color image enhancement. Neurocomputing 2018, 322, 216–228. [Google Scholar] [CrossRef]
- Balamurugan, D.; Aravinth, S.S.; Reddy, P.C.S.; Rupani, A.; Manikandan, A. Multiview objects recognition using deep learning-based wrap-CNN with voting scheme. Neural Process. Lett. 2022, 54, 1495–1521. [Google Scholar] [CrossRef]
- Zheng, C.; Shi, D.; Shi, W. Adaptive unfolding total variation network for low-light image enhancement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 19–25 October 2021; pp. 4439–4448. [Google Scholar]
- Liu, X.; Ma, W.; Ma, X.; Wang, J. Lae-net: A locally-adaptive embedding network for low-light image enhancement. Pattern Recognit. 2023, 133, 109–119. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Lighten-net: A convolutional neural network for weakly illuminated image enhancement. Pattern Recognit. Lett. 2018, 104, 15–22. [Google Scholar]
- Li, J.; Li, J.; Fang, F.; Li, F.; Zhang, G. Luminance-aware pyramid network for low-light image enhancement. IEEE Trans. Multimed. 2020, 23, 3153–3165. [Google Scholar] [CrossRef]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10561–10570. [Google Scholar]
- Park, S.; Yu, S.; Moon, B.; Ko, S.; Paik, J. Low-light image enhancement using variational optimization-based Retinex model. IEEE Trans. Consum. Electron. 2017, 63, 178–184. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-revealing low-light image enhancement via robust Retinex model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef]
- Ren, X.; Yang, W.; Cheng, W.H.; Liu, J. LR3M: Robust low-light enhancement via low-rank regularized Retinex model. IEEE Trans. Image Process. 2020, 29, 5862–5876. [Google Scholar] [CrossRef]
- Kurihara, K.; Yoshida, H.; Iiguni, Y. Low-light image enhancement via adaptive shape and texture prior. In Proceedings of the 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Sorrento, Italy, 26–29 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 74–81. [Google Scholar]
- Chien, C.C.; Kinoshita, Y.; Shiota, S.; Kiya, H. A Retinex-based image enhancement scheme with noise aware shadow-up function. In International Workshop on Advanced Image Technology (IWAIT); SPIE: Bellingham, WA, USA, 2019; Volume 501–506, p. 11049. [Google Scholar]
- Kang, M.; Jung, M. Simultaneous image enhancement and restoration with non-convex total variation. J. Sci. Comput. 2021, 87, 83. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Yang, M.; Liu, R.W. Low-light image enhancement with deep blind denoising. In Proceedings of the 2020 12th International Conference on Machine Learning and Computing, Shenzhen, China, 19–21 June 2020; pp. 406–411. [Google Scholar]
- Ng, M.K.; Wang, W. A total variation model for Retinex. SIAM J. Imaging Sci. 2011, 4, 345–365. [Google Scholar] [CrossRef]
- Fu, X.; Zeng, D.; Huang, Y.; Zhang, X.P.; Ding, X. A weighted variational model for simultaneous reflectance and illumination estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June 26–1 July 2016; pp. 2782–2790. [Google Scholar]
- Merugu, S.; Tiwari, A.; Sharma, S.K. Spatial–spectral image classification with edge preserving method. J. Indian Soc. Remote Sens. 2021, 49, 703–711. [Google Scholar] [CrossRef]
- Gu, Z.; Li, F.; Fang, F.; Zhang, G. A novel Retinex-based fractional-order variational model for images with severely low light. IEEE Trans. Image Process. 2019, 29, 3239–3253. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Yang, S.; Fan, W.; Wonka, P.; Ye, J. A highly scalable parallel algorithm for isotropic total variation models. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 235–243. [Google Scholar]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex decomposition for low-light enhancement. arXiv 2018, arXiv:1808.04560. [Google Scholar]
- Wang, S.; Zheng, J.; Hu, H.M.; Li, B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Zhai, G.; Lin, W.; Yang, X.; Zhang, W. No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans. Image Process. 2015, 24, 3218–3231. [Google Scholar] [PubMed]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
Method | JIEP | LIME | EVID | RBVF | STAR | OURS |
---|---|---|---|---|---|---|
Corr | 0.0346 | 0.0275 | 0.0297 | 0.0267 | 0.0231 | 0.0167 |
Image | Methods | PSNR↑ 1 | SSIM↑ 1 | ARISM↓ 1 | NIQE↓ 1 |
---|---|---|---|---|---|
Figure 6 (Bookcase) | JIEP | 20.3601 | 0.8255 | 3.7321 | 3.2672 |
LIME | 20.3754 | 0.8862 | 3.7164 | 3.2167 | |
EVID | 20.1209 | 0.8190 | 3.5751 | 3.1753 | |
RBVF | 20.9801 | 0.8809 | 3.5324 | 3.1387 | |
STAR | 21.0102 | 0.9001 | 3.4701 | 3.1122 | |
OURS | 22.0661 | 0.9153 | 3.3882 | 3.0512 | |
Figure 7 (Cabinet) | JIEP | 18.2423 | 0.8012 | 3.7106 | 3.2238 |
LIME | 19.3202 | 0.8527 | 3.6941 | 3.2069 | |
EVID | 19.6229 | 0.8505 | 3.5103 | 3.1711 | |
RBVF | 19.6130 | 0.8578 | 3.5135 | 3.1287 | |
STAR | 19.9580 | 0.86751 | 3.3625 | 3.1022 | |
OURS | 20.6137 | 0.8951 | 3.2225 | 3.0382 |
Methods | PSNR↑ 1 | SSIM↑ 1 | ARISM↓ 1 | NIQE↓ 1 |
---|---|---|---|---|
JIEP | 18.1109 | 0.8010 | 3.8121 | 3.4083 |
LIME | 19.1732 | 0.8477 | 3.7125 | 3.3399 |
EVID | 19.5610 | 0.8498 | 3.6200 | 3.2670 |
RBVF | 19.5707 | 0.8522 | 3.5346 | 3.1871 |
STAR | 19.8765 | 0.8611 | 3.4320 | 3.1651 |
OURS | 20.6137 | 0.8931 | 3.2890 | 3.0901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Yue, W.; Xu, J.; Chen, H. Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model. Mathematics 2023, 11, 3834. https://doi.org/10.3390/math11183834
Zhao C, Yue W, Xu J, Chen H. Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model. Mathematics. 2023; 11(18):3834. https://doi.org/10.3390/math11183834
Chicago/Turabian StyleZhao, Chenping, Wenlong Yue, Jianlou Xu, and Huazhu Chen. 2023. "Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model" Mathematics 11, no. 18: 3834. https://doi.org/10.3390/math11183834
APA StyleZhao, C., Yue, W., Xu, J., & Chen, H. (2023). Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model. Mathematics, 11(18), 3834. https://doi.org/10.3390/math11183834