Next Article in Journal
Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian
Previous Article in Journal
Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Deformations and Extensions of Modified λ-Differential 3-Lie Algebras

1
School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China
2
School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
3
Postdoctoral Scientific Research Station, ShijiHengtong Technology Co., Ltd., Guiyang 550014, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(18), 3853; https://doi.org/10.3390/math11183853
Submission received: 1 August 2023 / Revised: 24 August 2023 / Accepted: 6 September 2023 / Published: 8 September 2023

Abstract

:
In this paper, we propose the representation and cohomology of modified λ -differential 3-Lie algebras. As their applications, the linear deformations, abelian extensions and T -extensions of modified λ -differential 3-Lie algebras are also studied.

1. Introduction

3-Lie algebra plays an important role in string theory, and it is also used to study supersymmetry and gauge symmetry transformation of the world-volume theory of multiple coincident M2-branes [1,2]. The concept of 3-Lie algebra, general n-Lie algebra, was first introduced by Filippov [3] and can be regarded as a generalization of Lie algebra to higher-order algebra. 3-Lie algebra has attracted the attention of scholars from mathematics and physics [4,5,6]. Representation theory, cohomology theory, deformations, Nijenhuis operators and extension theory of n-Lie algebras have been widely studied by scholars [7,8,9,10,11,12,13,14,15,16,17].
Derivations play important roles in the study of homotopy Lie algebras [18], differential Galois theory [19], control theory and gauge theories of quantum field theory [20]. Recently, authors have studied algebras with derivations in [21,22] from the operadic point of view. In [23], Tang et al. investigated the deformation and extension of Lie algebras with derivations from the cohomological point of view. The results of [23] have been extended to 3-Lie algebras with derivations [24,25]. More research on algebraic structures with derivations has been developed; see [26,27,28,29,30,31] and references cited therein.
In recent years, scholars have increasingly focused on structures with arbitrary weights, thanks to the important work of [32,33,34,35,36,37]. The papers [38,39,40] established the cohomology, extensions and deformations of Rota–Baxter 3-Lie algebras with any weight λ , as well as the differential 3-Lie algebras with any weight λ . Additionally, the cohomology and deformation of modified Rota–Baxter algebras were studied by Das [41]. The works [42,43] provided insights into the cohomology and deformation of modified Rota–Baxter Leibniz algebras with weight λ . Furthermore, Peng et al. [44] introduced the concept of modified λ -differential Lie algebras.
Motivated by the mentioned work on the modified λ -differential operator on Lie algebras and considering the importance of 3-Lie algebra, representation and cohomology, in this paper, our main objective is to study modified λ -differential 3-Lie algebras. We develop a cohomology theory of modified λ -differential 3-Lie algebras that controls the deformation and extensions of modified λ -differential 3-Lie algebras.
The paper is organized as follows. In Section 2, we introduce the representation and cohomology of modified λ -differential 3-Lie algebras (MD λ 3-LieAs). In Section 3, we consider linear deformations of MD λ 3-LieAs. In Section 4, we study abelian extensions of MD λ 3-LieAs. In Section 5, we study T -extensions of MD λ 3-LieAs.
Throughout this paper, k denotes a field of characteristic zero. All the vector spaces and linear maps are taken over k .

2. Representations and Cohomologies of MD λ 3-LieAs

In this section, we introduce the concept of a MD λ 3-LieA and present some examples. Then, we give representations and cohomologies of MD λ 3-LieAs.
Definition 1 
([3]). (i) A 3-Lie algebra is a tuple ( A , [ , , ] ) in which A is a vector space together with a skew-symmetric ternary operation [ , , ] : 3 A A such that
[ a 1 , a 2 , [ a 3 , a 4 , a 5 ] ] = [ [ a 1 , a 2 , a 3 ] , a 4 , a 5 ] + [ a 3 , [ a 1 , a 2 , a 4 ] , a 5 ] + [ a 3 , a 3 , [ a 1 , a 2 , a 5 ] ] ,
for all a 1 , a 2 , a 3 , a 4 , a 5 A .
(ii) 
A homomorphism between two 3-Lie algebras ( A 1 , [ , , ] 1 ) and ( A 2 , [ , , ] 2 ) is a linear map η : A 1 A 2 satisfying η ( [ a 1 , a 2 , a 3 ] 1 ) = [ η ( a 1 ) , η ( a 2 ) , η ( a 3 ) ] 2 , a 1 , a 2 , a 3 A 1 .
Definition 2. 
(i) Let λ k and ( A , [ , , ] ) be a 3-Lie algebra. A modified λ-differential operator on 3-Lie algebra A is a linear map d : A A , such that
d [ a 1 , a 2 , a 3 ] = [ d ( a 1 ) , a 2 , a 3 ] + [ a 1 , d ( a 2 ) , a 3 ] + [ a 1 , a 2 , d ( a 3 ) ] + λ [ a 1 , a 2 , a 3 ] , a 1 , a 2 , a 3 A .
(ii) 
A modified λ-differential 3-Lie algebra (MD λ 3-LieA) is a triple ( A , [ , , ] , d ) consisting of a 3-Lie algebra ( A , [ , , ] ) and a modified λ-differential operator d .
(iii) 
A homomorphism between two MD λ 3-LieAs ( A 1 , [ , , ] 1 , d 1 ) and ( A 2 , [ , , ] 2 , d 2 ) is a 3-Lie algebra homomorphism η : ( A 1 , [ , , ] 1 ) ( A 2 , [ , , ] 2 ) such that η d 1 = d 2 η . Furthermore, if η is nondegenerate, then η is called an isomorphism from A 1 to A 2 .
Let ( A , [ , , ] ) be a 3-Lie algebra; then, the elements in 2 A are called fundamental objects of the 3-Lie algebra ( A , [ , , ] ) . There is a bilinear operation [ , ] on 2 A , which is given by
[ A , B ] F = [ a 1 , a 2 , b 1 ] b 2 + b 1 [ a 1 , a 2 , b 2 ] , A = a 1 a 2 , B = b 1 b 2 2 A .
It is shown in [45] that ( 2 A , [ , ] F ) is a Leibniz algebra. Furthermore, by direct calculation, we have the following result.
Proposition 1. 
Let ( A , [ , , ] , d ) be a MD λ 3-LieA. Then, ( 2 A , [ , ] F , d F ) is a Leibniz algebra with a derivation, where d F ( a 1 a 2 ) = d ( a 1 ) a 2 + a 1 d ( a 2 ) + λ a 1 a 2 , for all a 1 a 2 2 A . See [26] for more details about Leibniz algebras with derivations.
Remark 1. 
Let d be a modified λ-differential operator on a 3-Lie algebra ( A , [ , , ] ) . If λ = 0 , then d is a derivation on the 3-Lie algebra A . See [46] for various derivations of 3-Lie algebras.
Example 1. 
Let ( A , [ , , ] ) be a 3-Lie algebra. Then, a linear map d : A A is a modified λ-differential operator if and only if d + λ 2 id A is a derivation on the 3-Lie algebra A .
Example 2. 
Let ( A , [ , , ] , d ) be a MD λ 3-LieA. Then, for k k , ( A , [ , , ] , k d ) is a MD ( k λ ) 3-LieA.
Definition 3. 
(i) (see [8]) A representation of a 3-Lie algebra ( A , [ , , ] ) on a vector space M is a skew-symmetric bilinear map ρ : A A End ( M ) , such that
ρ ( [ a 1 , a 2 , a 3 ] , a 4 ) = ρ ( a 2 , a 3 ) ρ ( a 1 , a 4 ) + ρ ( a 3 , a 1 ) ρ ( a 2 , a 4 ) + ρ ( a 1 , a 2 ) ρ ( a 3 , a 4 ) ,
ρ ( a 1 , a 2 ) ρ ( a 3 , a 4 ) = ρ ( a 3 , a 4 ) ρ ( a 1 , a 2 ) + ρ ( [ a 1 , a 2 , a 3 ] , a 4 ) + ρ ( a 3 , [ a 1 , a 2 , a 4 ] ) ,
for all a 1 , a 2 , a 3 , a 4 A . We also denote a representation of A on M by ( M ; ρ ) .
(ii) A representation of a MD λ 3-LieA ( A , [ , , ] , d ) is a triple ( M ; ρ , d M ) , where ( M ; ρ ) is a representation of the 3-Lie algebra ( A , [ , , ] ) and d M is a linear operator on M , satisfying the following equation
d M ( ρ ( a , b ) v ) = ρ ( d ( a ) , b ) v + ρ ( a , d ( b ) ) v + ρ ( a , b ) d M ( v ) + λ ρ ( a , b ) v ,
for any a , b A and v M .
Remark 2. 
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) . If λ = 0 , then ( M ; ρ , d M ) is a representation of the 3-Lie algebra with a derivation ( A , [ , , ] , d ) . See [24,25,29] for more details about 3-Lie algebras with derivations.
Example 3. 
Let ( M ; ρ ) be a representation of a 3-Lie algebra ( A , [ , , ] ) . Then, ( M ; ρ , d M ) is a representation of the MD λ 3-LieA ( A , [ , , ] , d ) if and only if ( M ; ρ , d M + λ 2 id M ) is a representation of the 3-Lie algebra with a derivation ( A , [ , , ] , d + λ 2 id A ) .
Example 4. 
Let ( M ; ρ ) be a representation of a 3-Lie algebra ( A , [ , , ] ) . Then, for k k , ( M ; ρ , id M ) is a representation of the MD ( 2 k ) 3-LieA ( A , [ , , ] , k id A ) .
Example 5. 
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) . Then, for k k , ( M ; ρ , k d M ) is a representation of the MD ( k λ ) 3-LieA ( A , [ , , ] , k d ) .
Proposition 2. 
Let ( A , [ , , ] ) be a 3-Lie algebra, and ( M ; ρ ) be a representation of it. Then, ( M ; ρ , d M ) is a representation of MD λ 3-LieA ( A , [ , , ] , d ) if and only if A M is a MD λ 3-LieA under the following maps:
[ a 1 + u 1 , a 2 + u 2 , a 3 + u 3 ] ρ : = [ a 1 , a 2 , a 3 ] + ρ ( a 1 , a 2 ) u 3 + ρ ( a 3 , a 1 ) u 2 + ρ ( a 2 , a 3 ) u 1 , d d M ( a 1 + u 1 ) : = d ( a 1 ) + d M ( u 1 ) ,
for all a 1 , a 2 , a 3 A and u 1 , u 2 , u 3 M .
Proof. 
Assume that ( A M , [ , , ] ρ , d d M ) is a MD λ 3-LieA, for any a 1 , a 2 A and u 3 M ; we have
d d M [ a 1 + 0 , a 2 + 0 , 0 + u 3 ] ρ = [ d d M ( a 1 + 0 ) , a 2 + 0 , 0 + u 3 ] ρ + [ a 1 + 0 , d d M ( a 2 + 0 ) , 0 + u 3 ] ρ + [ a 1 + 0 , a 2 + 0 , d d M ( 0 + u 3 ) ] ρ + λ [ a 1 + 0 , a 2 + 0 , 0 + u 3 ] ρ ,
which implies that
d M ( ρ ( a 1 , a 2 ) u 3 ) = ρ ( d ( a 1 ) , a 2 ) u 3 + ρ ( a 1 , d ( a 2 ) ) u 3 + ρ ( a 1 , a 2 ) d M ( u 3 ) + λ ρ ( a 1 , a 2 ) u 3 .
Therefore, ( M ; ρ , d M ) is a representation of ( A , [ , , ] , d ) .
The converse can be proved similarly. □
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) and M : = Hom ( M , k ) be a dual space of M . We define a bilinear map ρ : 2 A End ( M ) and a linear map d M : M M respectively by
ρ ( a 1 , a 2 ) u , v = u , ρ ( a 1 , a 2 ) v and d M u , v = u , d M ( v ) ,
for any a 1 , a 2 A , v M and u M .
Proposition 3. 
With the above notations, ( M ; ρ , d M ) is a representation of the MD λ 3-LieA ( A , [ , , ] , d ) .
Proof. 
First, It has been proved that [47] ( M ; ρ ) is a representation of the 3-Lie algebra ( A , [ , , ] ) . Furthermore, for any a 1 , a 2 A , v M and u M , by Equations (5) and (6), we have
ρ ( d ( a 1 ) , a 2 ) u , v + ρ ( a 1 , d ( a 2 ) ) u , v + ρ ( a 1 , a 2 ) ( d M ) u , v + λ ρ ( a 1 , a 2 ) u , v ( d M ) ρ ( a 1 , a 2 ) u , v = u , ρ ( d ( a 1 ) , a 2 ) v u , ρ ( a 1 , d ( a 2 ) ) v ( d M ) u , ρ ( a 1 , a 2 ) v u , λ ρ ( a 1 , a 2 ) v + ρ ( a 1 , a 2 ) u , d M ( v ) = u , ρ ( d ( a 1 ) , a 2 ) v u , ρ ( a 1 , d ( a 2 ) ) v + u , d M ( ρ ( a 1 , a 2 ) v ) u , λ ρ ( a 1 , a 2 ) v u , ρ ( a 1 , a 2 ) d M ( v ) = u , ρ ( d ( a 1 ) , a 2 ) v + ρ ( a 1 , d ( a 2 ) ) v d M ( ρ ( a 1 , a 2 ) v ) + λ ρ ( a 1 , a 2 ) v + ρ ( a 1 , a 2 ) d M ( v ) = 0 ,
which implies that ρ ( d ( a 1 ) , a 2 ) u + ρ ( a 1 , d ( a 2 ) ) u + ρ ( a 1 , a 2 ) ( d M ) u + λ ρ ( a 1 , a 2 ) u ( d M ) ρ ( a 1 , a 2 ) u = 0 . So, we obtain the result. □
Example 6. 
Let ( A , [ , , ] , d ) be a MD λ 3-LieA and define a d : A A End ( A ) by a d ( a 1 , a 2 ) ( a ) = [ a 1 , a 2 , a ] , a 1 , a 2 , a A . Then, ( A ; a d , d ) is a representation of the MD λ 3-LieA ( A , [ , , ] , d ) , which is called the adjoint representation of ( A , [ , , ] , d ) . Furthermore, ( A ; a d , d ) is a dual adjoint representation of ( A , [ , , ] , d ) , which is called the coadjoint representation of ( A , [ , , ] , d ) .
Next, we will study the cohomology of a MD λ 3-LieA with coefficients in its representation.
Recall from [14] that let ( M ; ρ ) be a representation of a 3-Lie algebra ( A , [ , , ] ) . Denote the n—cochains of A with coefficients in representation ( M ; ρ ) by
C 3 Lie n ( A , M ) : = Hom ( ( 2 A ) n 1 A , M ) , n 1 .
The coboundary operator δ : C 3 Lie n ( A , M ) C 3 Lie n + 1 ( A , M ) , for A i = a i b i 2 A , a n + 1 A and f C 3 Lie n ( A , M ) , as
δ f ( A 1 , , A n , a n + 1 ) = ( 1 ) n + 1 ρ ( b n , a n + 1 ) f ( A 1 , , A n 1 , a n ) + ρ ( a n + 1 , a n ) f ( A 1 , , A n 1 , b n ) + i = 1 n ( 1 ) i + 1 ρ ( a i , b i ) f ( A 1 , , A i 1 , A i + 1 , , A n , a n + 1 ) + i = 1 n ( 1 ) i f ( A 1 , , A i 1 , A i + 1 , , A n , [ a i , b i , a n + 1 ] ) + 1 i < k n ( 1 ) i f ( A 1 , , A i 1 , A i + 1 , , A k 1 , [ a i , b i , a k ] b k + a k [ a i , b i , b k ] , , A n , a n + 1 ) ,
it was proved that δ δ = 0 .
Lemma 1. 
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) . For any n 1 , we define a linear map Φ : C 3 Lie n ( A , M ) C 3 Lie n ( A , M ) by
Φ f ( A 1 , , A n 1 , a n ) = i = 1 n 1 f ( A 1 , , A i 1 , d ( a i ) b i + a i d ( b i ) , A i + 1 , , A n 1 , a n ) + f ( A 1 , , A n 1 , d ( a n ) ) + ( n 1 ) λ f ( A 1 , , A n 1 , a n ) d M ( f ( A 1 , , A n 1 , a n ) ) ,
for any f C 3 Lie n ( A , M ) and A i = a i b i 2 A , i = 1 , , n 1 , a n A . Then, Φ is a cochain map; i.e., Φ δ = δ Φ .
Proof. 
It follows by a straightforward tedious calculations. □
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) ; we define n-cochains for MD λ 3-LieA as follows:
C md 3 Lie ˘ n ( A , M ) : = C 3 Lie n ( A , M ) C 3 Lie n 1 ( A , M ) , n 2 , Hom ( A , M ) , n = 1 .
We define a linear map : C md 3 Lie ˘ n ( A , M ) C md 3 Lie ˘ n + 1 ( A , M ) by
( f ) = ( δ f , Φ f ) , if f C md 3 Lie ˘ 1 ( A , M ) ; ( f , g ) = ( δ f , δ g + ( 1 ) n Φ f ) , if ( f , g ) C md 3 Lie ˘ n ( A , M ) , n 2 .
In view of Lemma 1, we have the following theorem.
Theorem 1. 
The linear map ∂ is a coboundary operator; that is, = 0 .
Therefore, we obtain a cochain complex ( C md 3 Lie ˘ ( A , M ) , ) , for n 2 , and we denote the set of n-cocycles by Z md 3 Lie ˘ n ( A , M ) = { ( f , g ) C md 3 Lie ˘ n ( A , M ) |   ( f , g ) = 0 } , the set of n-coboundaries by B md 3 Lie ˘ n ( A , M ) = { ( f , g ) | ( f , g ) C md 3 Lie ˘ n 1 ( A , M ) } and the n-th cohomology group of the MD λ 3-LieA ( A , [ , , ] , d ) with coefficients in the representation ( M ; ρ , d M ) by H md 3 Lie ˘ n ( A , M ) = Z md 3 Lie ˘ n ( A , M ) / B md 3 Lie ˘ n ( A , M ) .
Lastly, we calculate the 1-cocycle and 2-cocycle.
For f C md 3 Lie ˘ 1 ( A , M ) , f is a 1-cocycle if ( f ) = ( δ f , Φ f ) = 0 , i.e.,
ρ ( b 1 , a 2 ) f ( a 1 ) + ρ ( a 2 , a 1 ) f ( b 1 ) + ρ ( a 1 , b 1 ) f ( a 2 ) f ( [ a 1 , b 1 , a 2 ] ) = 0
and
d M ( f ( a 1 ) ) f ( d ( a 1 ) ) = 0 .
For ( f , g ) C md 3 Lie ˘ 2 ( A , M ) , ( f , g ) is a 2-cocycle if ( f , g ) = ( δ f , δ g + Φ f ) = 0 , i.e.,
ρ ( b 2 , a 3 ) f ( a 1 , b 1 , a 2 ) ρ ( a 3 , a 2 ) f ( a 1 , b 1 , b 2 ) + ρ ( a 1 , b 1 ) f ( a 2 , b 2 , a 3 ) ρ ( a 2 , b 2 ) f ( a 1 , b 1 , a 3 ) f ( a 2 , b 2 , [ a 1 , b 1 , a 3 ] ) + f ( a 1 , b 1 , [ a 2 , b 2 , a 3 ] ) f ( [ a 1 , b 1 , a 2 ] , b 2 , a 3 ) f ( a 2 , [ a 1 , b 1 , b 2 ] , a 3 ) = 0
and
ρ ( b 1 , a 2 ) f ( a 1 ) + ρ ( a 2 , a 1 ) f ( b 1 ) + ρ ( a 1 , b 1 ) f ( a 2 ) f ( [ a 1 , b 1 , a 2 ] ) + f ( d ( a 1 ) , b 1 , a 2 ) + f ( a 1 , d ( b 1 ) , a 2 ) + f ( a 1 , b 1 , d ( a 2 ) ) + λ f ( a 1 , b 1 , a 2 ) d M ( f ( a 1 , b 1 , a 2 ) ) = 0 .

3. Linear Deformations of MD λ 3-LieAs

In this section, we study linear deformations of MD λ 3-LieAs.
Let ( A , [ , , ] , d ) be a MD λ 3-LieA. Denote ν 0 = [ , , ] and d 0 = d . Consider a family of linear maps:
ν t = ν 0 + t ν 1 + t 2 ν 2 , ν 1 , ν 2 C 3 Lie 2 ( A , A ) , d t = d 0 + t d 1 , d 1 C 3 Lie 1 ( A , A ) .
Definition 4. 
A linear deformation of the MD λ 3-LieA ( A , [ , , ] , d ) is a pair ( ν t , d t ) which endows ( A [ [ t ] ] , ν t , d t ) with the MD λ 3-LieA.
Proposition 4. 
The pair ( ν t , d t ) generates a linear deformation of the MD λ 3-LieA ( A , [ , , ] , d ) if and only if the following equations hold:
i + j = n ν i ( a 1 , a 2 , ν j ( a 3 , a 4 , a 5 ) ) = i + j = n ν i ( ν j ( a 1 , a 2 , a 3 ) , a 4 , a 5 ) + i + j = n ν i ( a 3 , ν j ( a 1 , a 2 , a 4 ) , a 5 ) + i + j = n ν i ( a 3 , a 4 , ν j ( a 1 , a 2 , a 5 ) ) ,
i + l = n d l ( ν i ( a 1 , a 2 , a 3 ) ) = i + l = n ν i ( d l ( a 1 ) , a 2 , a 3 ) + i + l = n ν i ( a 1 , d l ( a 2 ) , a 3 ) + i + l = n ν i ( a 1 , a 2 , d l ( a 3 ) ) + λ ν n ( a 1 , a 2 , a 3 ) ,
for any a 1 , a 2 , a 3 , a 4 , a 5 A and i , j = 0 , 1 , 2 , l = 0 , 1 .
Proof. 
( A [ [ t ] ] , ν t , d t ) is a MD λ 3-LieA if and only if
ν t ( a 1 , a 2 , ν t ( a 3 , a 4 , a 5 ) ) = ν t ( ν t ( a 1 , a 2 , a 3 ) , a 4 , a 5 ) + ν t ( a 3 , ν t ( a 1 , a 2 , a 4 ) , a 5 ) + ν t ( a 3 , a 4 , ν t ( a 1 , a 2 , a 5 ) ) ,
d t ( ν t ( a 1 , a 2 , a 3 ) ) = ν t ( d t ( a 1 ) , a 2 , a 3 ) + ν t ( a 1 , d t ( a 2 ) , a 3 ) + ν t ( a 1 , a 2 , d t ( a 3 ) ) + λ ν t ( a 1 , a 2 , a 3 ) .
Comparing the coefficients of t n on both sides of the above equations, Equations (9) and (10) are equivalent to Equations (7) and (8), respectively. □
Corollary 1. 
Let ( A [ [ t ] ] , ν t , d t ) be a linear deformation of a MD λ 3-LieA ( A , ν 0 , d ) . Then, ( ν 1 , d 1 ) is a 2-cocycle of ( A , [ , , ] , d ) with the coefficient in the adjoint representation ( A ; a d , d ) .
Proof. 
For n = 1 , Equations (7) and (8) are equivalent to
ν 1 ( a 1 , a 2 , [ a 3 , a 4 , a 5 ] ) + [ a 1 , a 2 , ν 1 ( a 3 , a 4 , a 5 ) ] = ν 1 ( [ a 1 , a 2 , a 3 ] , a 4 , a 5 ) + [ ν 1 ( a 1 , a 2 , a 3 ) , a 4 , a 5 ] + ν 1 ( a 3 , [ a 1 , a 2 , a 4 ] , a 5 ) + [ a 3 , ν 1 ( a 1 , a 2 , a 4 ) , a 5 ] + ν 1 ( a 3 , a 4 , [ a 1 , a 2 , a 5 ] ) + [ a 3 , a 4 , ν 1 ( a 1 , a 2 , a 5 ) ] , d 1 ( [ a 1 , a 2 , a 3 ] ) + d ( ν 1 ( a 1 , a 2 , a 3 ) ) = [ d 1 ( a 1 ) , a 2 , a 3 ] + ν 1 ( d ( a 1 ) , a 2 , a 3 ) + [ a 1 , d 1 ( a 2 ) , a 3 ] + ν 1 ( a 1 , d ( a 2 ) , a 3 ) + [ a 1 , a 2 , d 1 ( a 3 ) ] + ν 1 ( a 1 , a 2 , d ( a 3 ) ) + λ ν 1 ( a 1 , a 2 , a 3 ) ,
which imply that δ ν 1 = 0 , δ d 1 + Φ ν 1 = 0 , respectively. Hence, ( ν 1 , d 1 ) is a 2-cocycle of ( A , [ , , ] , d ) with the coefficient in the adjoint representation ( A ; a d , d ) . □
Definition 5. 
The 2-cocycle ( ν 1 , d 1 ) is called the infinitesimal of the linear deformation ( A [ [ t ] ] , ν t , d t ) of ( A , [ , , ] , d ) .
Definition 6. 
(i) Two linear deformations ( A [ [ t ] ] , ν t , d t ) and ( A [ [ t ] ] , ν t , d t ) of the MD λ 3-LieA ( A , [ , , ] , d ) are said to be equivalent if there exists a linear map N : A A , such that N t = id A + t N satisfying
N t ( d t ( a 1 ) ) = d t ( N t ( a 1 ) ) ,
N t ν t ( a 1 , a 2 , a 3 ) = ν t ( N t ( a 1 ) , N t ( a 2 ) , N t ( a 3 ) ) ,
for any a 1 , a 2 , a 3 A .
(ii) A linear deformation ( A [ [ t ] ] , ν t , d t ) of the MD λ 3-LieA ( A , [ , , ] , d ) is said to be trivial if ( A [ [ t ] ] , ν t , d t ) is equivalent to ( A , [ , , ] , d ) .
Comparing the coefficients of t on both sides of the above Equations (11) and (12), we have
ν 1 ( a 1 , a 2 , a 3 ) ν 1 ( a 1 , a 2 , a 3 ) = [ N a 1 , a 2 , a 3 ] + [ a 1 , N a 2 , a 3 ] + [ a 1 , a 2 , N a 3 ] N [ a 1 , a 2 , a 3 ] , d 1 ( a ) d 1 ( a ) = d ( N 1 a ) N 1 d ( a ) .
Thus, we have the following theorem.
Theorem 2. 
The infinitesimals of two equivalent linear deformations of ( A , [ , , ] , d ) are in the same cohomological class in H md 3 Lie ˘ 2 ( A , A ) .
Let ( A [ [ t ] ] , ν t , d t ) be a trivial deformation of ( A , [ , , ] , d ) . Then, there exists a linear map N : A A , such that N t = id A + t N satisfying
N t ( d t ( a 1 ) ) = d ( N t ( a 1 ) ) ,
N t ν t ( a 1 , a 2 , a 3 ) = [ N t ( a 1 ) , N t ( a 2 ) , N t ( a 3 ) ] .
Compare the coefficients of t i ( 1 i 3 ) on both sides of Equations (13) and (14), and we can obtain
N d ( a 1 ) = d ( N a 1 ) ,
ν 1 ( a 1 , a 2 , a 3 ) + N [ a 1 , a 2 , a 3 ] = [ N a 1 , a 2 , a 3 ] + [ a 1 , N a 2 , a 3 ] + [ a 1 , a 2 , N a 3 ] ,
ν 2 ( a 1 , a 2 , a 3 ) + N ν 1 ( a 1 , a 2 , a 3 ) = [ N a 1 , N a 2 , a 3 ] + [ a 1 , N a 2 , N a 3 ] + [ N a 1 , a 2 , N a 3 ] ,
N ν 2 ( a 1 , a 2 , a 3 ) = [ N a 1 , N a 2 , N a 3 ] .
Thus, from a trivial deformation, we can obtain the following definition of Nijenhuis operator.
Definition 7. 
Let ( A , [ , , ] , d ) be a MD λ 3-LieA. A linear map N : A A is called a Nijenhuis operator if the following equations hold:
N d = d N ,
[ N a 1 , N a 2 , N a 3 ] = N ( [ a 1 , N a 2 , N a 3 ] + [ N a 1 , a 2 , N a 3 ] + [ N a 1 , N a 2 , a 3 ] ) N 2 ( [ N a 1 , a 2 , a 3 ] + [ a 1 , N a 2 , a 3 ] + [ a 1 , a 2 , N a 3 ] ) + N 3 [ a 1 , a 2 , a 3 ] ,
for any a 1 , a 2 , a 3 A .
Proposition 5. 
Let ( A , [ , , ] , d ) be a MD λ 3-LieA, and N : A A a Nijenhuis operator. Then, ( A , [ , , ] N , d ) is a MD λ 3-LieA, where
[ a 1 , a 2 , a 3 ] N = [ a 1 , N a 2 , N a 3 ] + [ N a 1 , a 2 , N a 3 ] + [ N a 1 , N a 2 , a 3 ] N ( [ N a 1 , a 2 , a 3 ] + [ a 1 , N a 2 , a 3 ] + [ a 1 , a 2 , N a 3 ] ) + N 2 [ a 1 , a 2 , a 3 ] .
Proof. 
In the light of [9], ( A , [ , , ] N ) is a 3-Lie algebra. Next, we prove that d is a modified λ -differential operator of ( A , [ , , ] N ) , for any a 1 , a 2 , a 3 A , by Equations (2) and (19), and we have
d [ a 1 , a 2 , a 3 ] N = d [ a 1 , N a 2 , N a 3 ] + d [ N a 1 , a 2 , N a 3 ] + d [ N a 1 , N a 2 , a 3 ] N ( d [ N a 1 , a 2 , a 3 ] + d [ a 1 , N a 2 , a 3 ] + d [ a 1 , a 2 , N a 3 ] ) + N 2 d [ a 1 , a 2 , a 3 ] = [ d ( a 1 ) , N a 2 , N a 3 ] + [ a 1 , N d ( a 2 ) , N a 3 ] + [ a 1 , N a 2 , N d ( a 3 ) ] + λ [ a 1 , N a 2 , N a 3 ] + [ N d ( a 1 ) , a 2 , N a 3 ] + [ N a 1 , d ( a 2 ) , N a 3 ] + [ N a 1 , a 2 , N d ( a 3 ) ] + λ [ N a 1 , a 2 , N a 3 ] + [ N d ( a 1 ) , N a 2 , a 3 ] + [ N a 1 , N d ( a 2 ) , a 3 ] + [ N a 1 , N a 2 , d ( a 3 ) ] + λ [ N a 1 , N a 2 , a 3 ] N ( [ N d ( a 1 ) , a 2 , a 3 ] + [ N a 1 , d ( a 2 ) , a 3 ] + [ N a 1 , a 2 , d ( a 3 ) ] + λ [ N a 1 , a 2 , a 3 ] ) N ( [ d ( a 1 ) , N a 2 , a 3 ] + [ a 1 , N d ( a 2 ) , a 3 ] + [ a 1 , N a 2 , d ( a 3 ) ] + λ [ a 1 , N a 2 , a 3 ] ) N ( [ d ( a 1 ) , a 2 , N a 3 ] + [ a 1 , d ( a 2 ) , N a 3 ] + [ a 1 , a 2 , N d ( a 3 ) ] + λ [ a 1 , a 2 , N a 3 ] ) + N 2 ( [ d ( a 1 ) , a 2 , a 3 ] + [ a 1 , d ( a 2 ) , a 3 ] + [ a 1 , a 2 , d ( a 3 ) ] + λ [ a 1 , a 2 , a 3 ] ) = [ d ( a 1 ) , a 2 , a 3 ] N + [ a 1 , d ( a 2 ) , a 3 ] N + [ a 1 , a 2 , d ( a 3 ) ] N + λ [ a 1 , a 2 , a 3 ] N .
So, we obtain the conclusion. □
Definition 8. 
A linear map R : M A is called an O -operator on the MD λ 3-LieA ( A , [ , , ] , d ) with respect to the representation ( M ; ρ , d M ) if the following equations hold:
R d M = d R , [ R v 1 , R v 2 , R v 3 ] = R ( ρ ( R v 1 , R v 2 ) v 3 + ρ ( R v 2 , R v 3 ) v 1 + ρ ( R v 3 , R v 1 ) v 2 ) ,
for any v 1 , v 2 , v 3 M .
Remark 3. 
Obviously, an invertible linear map R : M A is an O -operator if and only if R 1 is a 1-cocycle of the MD λ 3-LieA ( A , [ , , ] , d ) with coefficients in the representation ( M ; ρ , d M ) .
Proposition 6. 
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) . Then, R : M A is an O -operator if and only if R ¯ = 0 R 0 0 : A M A M is a Nijenhuis operator on semidirect product MD λ 3-LieA ( A M , [ , , ] ρ , d d M ) .
Proof. 
For any a 1 , a 2 , a 3 A and u 1 , u 2 , u 3 M , by R ¯ 2 = 0 , we have
( d d M ) R ¯ ( a 1 + u 1 ) = ( d d M ) ( R u 1 + 0 ) = d ( R u 1 ) + 0 , R ¯ ( d d M ) ( a 1 + u 1 ) = R ¯ ( d ( a 1 ) + d M ( u 1 ) ) = R d M ( u 1 ) + 0 , R ¯ ( [ a 1 + u 1 , R ¯ ( a 2 + u 2 ) , R ¯ ( a 3 + u 3 ) ] ρ + [ R ¯ ( a 1 + u 1 ) , a 2 + u 2 , R ¯ ( a 3 + u 3 ) ] ρ + [ R ¯ ( a 1 + u 1 ) , R ¯ ( a 2 + u 2 ) , a 3 + u 3 ] ρ ) [ R ¯ ( a 1 + u 1 ) , R ¯ ( a 2 + u 2 ) , R ¯ ( a 3 + u 3 ) ] ρ = R ¯ ( [ a 1 + u 1 , R u 2 + 0 , R u 3 + 0 ] ρ + [ R u 1 + 0 , a 2 + u 2 , R u 3 + 0 ] ρ + [ R u 1 + 0 , R u 2 + 0 , a 3 + u 3 ] ρ ) [ R u 1 + 0 , R u 2 + 0 , R u 3 + 0 ] ρ = R ¯ ( [ a 1 , R u 2 , R u 3 ] + ρ ( R u 2 , R u 3 ) u 1 + [ R u 1 , a 2 , R u 3 ] + ρ ( R u 3 , R u 1 ) u 2 + [ R u 1 , R u 2 a 3 ] + ρ ( R u 1 , R u 2 ) u 3 ) [ R u 1 , R u 2 , R u 3 ] + 0 = R ( ρ ( R u 2 , R u 3 ) u 1 + ρ ( R u 3 , R u 1 ) u 2 + ρ ( R u 1 , R u 2 ) u 3 ) [ R u 1 , R u 2 , R u 3 ] + 0 ,
which implies that R is an O -operator if and only if R ¯ is a Nijenhuis operator. □

4. Abelian Extensions of MD λ 3-LieAs

In this section, we study abelian extensions of MD λ 3-LieAs and show that they are classified by the second cohomology groups.
Notice that a vector space M together with a linear map d M is naturally a MD λ 3-LieA where the bracket on M is defined to be [ , , ] M = 0 .
Definition 9. 
An abelian extension of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) is a short exact sequence of homomorphisms of MD λ 3-LieAs
0 ( M , [ , , ] M , d M ) i ( A ^ , [ , , ] A ^ , d ^ ) p ( A , [ , , ] , d ) 0 ,
i.e., there exists a commutative diagram:
0 M i A ^ p A 0 d M d M d ^ d ^ d d 0 M i A ^ p A 0 ,
where the MD λ 3-LieA ( A ^ , [ , , ] A ^ , d ^ ) satisfies [ , u , v ] A ^ = 0 , for all u , v M .
We will call ( A ^ , [ , , ] A ^ , d ^ ) an abelian extension of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) .
A section of an abelian extension ( A ^ , [ , , ] A ^ , d ^ ) of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) is a linear map s : A A ^ such that p s = id A .
Let ( M ; ρ , d M ) be a representation of a MD λ 3-LieA ( A , [ , , ] , d ) . Assume that ( f , g ) C md 3 Lie ˘ 2 ( A , M ) . Define [ , , ] ρ f : 3 ( A M ) A M and d g : A M A M , respectively, by
[ a 1 + u 1 , a 2 + u 2 , a 3 + u 3 ] ρ f = [ a 1 , a 2 , a 3 ] + ρ ( a 2 , a 3 ) u 1 + ρ ( a 3 , a 1 ) u 2 + ρ ( a 1 , a 2 ) u 3 + f ( a 1 , a 2 , a 3 ) ,
d g ( a 1 + u 1 ) = d ( a 1 ) + d M ( u 1 ) + g ( a 1 ) , a 1 , a 2 , a 3 A , u 1 , u 2 , u 3 M .
Proposition 7. 
The triple ( A M , [ , , ] ρ f , d g ) is a MD λ 3-LieA if and only if ( f , g ) is a 2-cocycle in the cohomology of the MD λ 3-LieA ( A , [ , , ] , d ) with the coefficient in ( M ; ρ , d M ) . In this case,
0 ( M , [ , , ] M , d M ) ( A M , [ , , ] ρ f , d g ) p ( A , [ , , ] , d ) 0
is an abelian extension.
Proof. 
( A M , [ , , ] ρ f , d g ) is a MD λ 3-LieA if and only if
[ [ a 1 + u 1 , a 2 + u 2 , a 3 + u 3 ] ρ f , a 4 + u 4 , a 5 + u 5 ] ρ f + [ a 3 + u 3 , [ a 1 + u 1 , a 2 + u 2 , a 4 + u 4 ] ρ f , a 5 + u 5 ] ρ f + [ a 3 + u 3 , a 4 + u 4 , [ a 1 + u 1 , a 2 + u 2 , a 5 + u 5 ] ρ f ] ρ f [ a 1 + u 1 , a 2 + u 2 , [ a 3 + u 3 , a 4 + u 4 , a 5 + u 5 ] ρ f ] ρ f = 0 ,
[ d g ( a 1 + u 1 ) , a 2 + u 2 , a 3 + u 3 ] ρ f + [ a 1 + u 1 , d g ( a 2 + u 2 ) , a 3 + u 3 ] ρ f + [ a 1 + u 1 , a 2 + u 2 , d g ( a 3 + u 3 ) ] ρ f + λ [ a 1 + u 1 , a 2 + u 2 , a 3 + u 3 ] ρ f d g [ a 1 + u 1 , a 2 + u 2 , a 3 + u 3 ] ρ f = 0 ,
for any a 1 , a 2 , a 3 , a 4 , a 5 A , u 1 , u 2 , u 3 , u 4 , u 5 M . Furthermore, Equations (23) and (24) are equivalent to
ρ ( a 4 , a 5 ) f ( a 1 , a 2 , a 3 ) + f ( [ a 1 , a 2 , a 3 ] , a 4 , a 5 ) + ρ ( a 5 , a 3 ) f ( a 1 , a 2 , a 4 ) + f ( a 3 , [ a 1 , a 2 , a 4 ] , a 5 ) + ρ ( a 3 , a 4 ) f ( a 1 , a 2 , a 5 ) + f ( a 3 , a 4 , [ a 1 , a 2 , a 5 ] ) ρ ( a 1 , a 2 ) f ( a 3 , a 4 , a 5 ) f ( a 1 , a 2 , [ a 3 , a 4 , a 5 ] ) = 0 ,
ρ ( a 2 , a 3 ) g ( a 1 ) + f ( d ( a 1 ) , a 2 , a 3 ) + ρ ( a 3 , a 1 ) g ( a 2 ) + f ( a 1 , d ( a 2 ) , a 3 ) + ρ ( a 1 , a 2 ) g ( a 3 ) + f ( a 1 , a 2 , d ( a 3 ) ) + λ f ( a 1 , a 2 , a 3 ) d M ( f ( a 1 , a 2 , a 3 ) ) g ( [ a 1 , a 2 , a 3 ] ) = 0 ,
using Equations (25) and (26), we obtain δ f = 0 and δ g + Φ f = 0 , respectively. Therefore, ( f , g ) = ( δ f , δ g + Φ f ) = 0 , which implies that ( f , g ) is a 2-cocycle.
Conversely, if ( f , g ) satisfying Equations (25) and (26), then ( A M , [ , , ] ρ f , d g ) is a MD λ 3-LieA. □
Let ( A ^ , [ , , ] A ^ , d ^ ) be an abelian extension of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) and s : A A ^ a section. Define ϱ : 2 A End ( M ) , υ : 3 A M and μ : A M , respectively, by
ϱ ( a 1 , a 2 ) u : = [ s ( a 1 ) , s ( a 2 ) , u ] A ^ , υ ( a 1 , a 2 , a 3 ) : = [ s ( a 1 ) , s ( a 2 ) , s ( a 3 ) ] A ^ s ( [ a 1 , a 2 , a 3 ] ) , μ ( a 1 ) : = d ^ ( s ( a 1 ) ) s ( d ( a 1 ) ) , a 1 , a 2 , a 3 A , u M .
Note that ϱ is independent on the choice of s.
Proposition 8. 
With the above notations, ( M , ϱ , d M ) is a representation of the MD λ 3-LieA ( A , [ , , ] , d ) and ( υ , μ ) is a 2-cocycle in the cohomology of the MD λ 3-LieA ( A , [ , , ] , d ) with the coefficient in ( M ; ϱ , d M ) . Furthermore, the cohomological class of the 2-cocycle [ ( υ , μ ) ] H md 3 Lie ˘ 2 ( A , M ) is independent of the choice of sections of p.
Proof. 
First, for any a 1 , a 2 , a 3 , a 4 A , u M , by Equation (1), we obtain
ϱ ( a 2 , a 3 ) ϱ ( a 1 , a 4 ) u + ϱ ( a 3 , a 1 ) ϱ ( a 2 , a 4 ) u + ϱ ( a 1 , a 2 ) ϱ ( a 3 , a 4 ) u ϱ ( [ a 1 , a 2 , a 3 ] , a 4 ) u = [ s ( a 2 ) , s ( a 3 ) , [ s ( a 1 ) , s ( a 4 ) , u ] A ^ ] A ^ + [ s ( a 3 ) , s ( a 1 ) , [ s ( a 2 ) , s ( a 4 ) , u ] A ^ ] A ^ + [ s ( a 1 ) , s ( a 2 ) , [ s ( a 3 ) , s ( a 4 ) , u ] A ^ ] A ^ [ s ( [ a 1 , a 2 , a 3 ] ) , s ( a 4 ) , u ] A ^ = [ s ( a 2 ) , s ( a 3 ) , [ s ( a 1 ) , s ( a 4 ) , u ] A ^ ] A ^ + [ s ( a 3 ) , s ( a 1 ) , [ s ( a 2 ) , s ( a 4 ) , u ] A ^ ] A ^ + [ s ( a 1 ) , s ( a 2 ) , [ s ( a 3 ) , s ( a 4 ) , u ] A ^ ] A ^ [ [ s ( a 1 ) , s ( a 2 ) , s ( a 3 ) ] A ^ υ ( a 1 , a 2 , a 3 ) , s ( a 4 ) , u ] A ^ = 0 , ϱ ( a 3 , a 4 ) ϱ ( a 1 , a 2 ) u + ϱ ( [ a 1 , a 2 , a 3 ] , a 4 ) u + ϱ ( a 3 , [ a 1 , a 2 , a 4 ] ) u ϱ ( a 1 , a 2 ) ϱ ( a 3 , a 4 ) u = [ s ( a 3 ) , s ( a 4 ) , [ s ( a 1 ) , s ( a 2 ) , u ] A ^ ] A ^ + [ s ( [ a 1 , a 2 , a 3 ] ) , s ( a 4 ) , u ] A ^ + [ s ( a 3 ) , s ( [ a 1 , a 2 , a 4 ] ) , u ] A ^ [ s ( a 1 ) , s ( a 2 ) , [ s ( a 3 ) , s ( a 4 ) , u ] A ^ ] A ^ = [ s ( a 3 ) , s ( a 4 ) , [ s ( a 1 ) , s ( a 2 ) , u ] A ^ ] A ^ + [ [ s ( a 1 ) , s ( a 2 ) , s ( a 3 ) ] υ ( a 1 , a 2 , a 3 ) , s ( a 4 ) , u ] A ^ + [ s ( a 3 ) , [ s ( a 1 ) , s ( a 2 ) , s ( a 4 ) ] υ ( a 1 , a 2 , a 4 ) , u ] A ^ [ s ( a 1 ) , s ( a 2 ) , [ s ( a 3 ) , s ( a 4 ) , u ] A ^ ] A ^ = 0 .
In addition, by Equation (2), we have
d M ( ϱ ( a 1 , a 2 ) u ) = d M ( [ s ( a 1 ) , s ( a 2 ) , u ] A ^ ) = [ d ^ ( s ( a 1 ) ) , s ( a 2 ) , u ] A ^ + [ s ( a 1 ) , d ^ ( s ( a 2 ) ) , u ] A ^ + [ s ( a 1 ) , s ( a 2 ) , d M ( u ) ] A ^ + λ [ s ( a 1 ) , s ( a 2 ) , u ] A ^ = [ s ( d ( a 1 ) ) + μ ( a 1 ) , s ( a 2 ) , u ] A ^ + [ s ( a 1 ) , s ( d ( a 2 ) ) + μ ( a 2 ) , u ] A ^ + [ s ( a 1 ) , s ( a 2 ) , d M ( u ) ] A ^ + λ [ s ( a 1 ) , s ( a 2 ) , u ] A ^ = ϱ ( d ( a 1 ) , a 2 ) u + ϱ ( a 1 , d ( a 2 ) ) u + ϱ ( a 1 , a 2 ) d M ( u ) + λ ϱ ( a 1 , a 2 ) u .
Hence, ( M , ϱ , d M ) is a representation over ( A , [ , , ] , d ) .
Since ( A ^ , [ , , ] A ^ , d ^ ) is an abelian extension of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) , by Proposition 7, ( υ , μ ) is a 2-cocycle. Moreover, let s 1 , s 2 : A M ^ be two distinct sections providing 2-cocycles ( υ 1 , μ 1 ) and ( υ 2 , μ 2 ) , respectively. Define linear map ι : A M by ι ( a 1 ) = s 1 ( a 1 ) s 2 ( a 1 ) . Then,
υ 1 ( a 1 , a 2 , a 3 ) = [ s 1 ( a 1 ) , s 1 ( a 2 ) , s 1 ( a 3 ) ] A ^ 1 s 1 ( [ a 1 , a 2 , a 3 ] ) = [ s 2 ( a 1 ) + ι ( a 1 ) , s 2 ( a 2 ) + ι ( a 2 ) , s 2 ( a 3 ) + ι ( a 3 ) ] A ^ 1 ( s 2 ( [ a 1 , a 2 , a 3 ] ) + ι ( [ a 1 , a 2 , a 3 ] ) ) = [ s 2 ( a 1 ) , s 2 ( a 2 ) , s 2 ( a 3 ) ] A ^ 2 + ϱ ( a 2 , a 3 ) ι ( a 1 ) + ϱ ( a 3 , a 1 ) ι ( a 2 ) + ϱ ( a 1 , a 2 ) ι ( a 3 ) s 2 ( [ a 1 , a 2 , a 3 ] ) ι ( [ a 1 , a 2 , a 3 ] ) = [ s 2 ( a 1 ) , s 2 ( a 2 ) , s 2 ( a 3 ) ] A ^ 2 s 2 ( [ a 1 , a 2 , a 3 ] ) + ϱ ( a 2 , a 3 ) ι ( a 1 ) + ϱ ( a 3 , a 1 ) ι ( a 2 ) + ϱ ( a 1 , a 2 ) ι ( a 3 ) ι ( [ a 1 , a 2 , a 3 ] ) = υ 2 ( a 1 , a 2 , a 3 ) + δ ι ( a 1 , a 2 , a 3 )
and
μ 1 ( a 1 ) = d ^ ( s 1 ( a 1 ) ) s 1 ( d ( a 1 ) ) = d ^ ( s 2 ( a 1 ) + ι ( a 1 ) ) s 2 ( d ( a 1 ) ) + ι ( d ( a 1 ) ) = d ^ ( s 2 ( a 1 ) ) s 2 ( d ( a 1 ) ) + d ^ ( ι ( a 1 ) ) ι ( d ( a 1 ) ) = μ 2 ( a 1 ) + d M ( ι ( a 1 ) ) ι ( d ( a 1 ) ) = μ 2 ( a 1 ) Φ ι ( a 1 ) ,
which implies that ( υ 1 , μ 1 ) ( υ 2 , μ 2 ) = ( δ ι , Φ ι ) = ( ι ) C md 3 Lie ˘ 2 ( A , M ) . So [ ( υ 1 , μ 1 ) ] = [ ( υ 2 , μ 2 ) ] H md 3 Lie ˘ 2 ( A , M ) . □
Definition 10. 
Let ( A ^ 1 , [ , , ] A ^ 1 , d ^ 1 ) and ( A ^ 2 , [ , , ] A ^ 2 , d ^ 2 ) be two abelian extensions of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) . They are said to be equivalent if there is an isomorphism of MD λ 3-LieA η : ( A ^ 1 , [ , , ] A ^ 1 , d ^ 1 ) ( A ^ 2 , [ , , ] A ^ 2 , d ^ 2 ) such that the following diagram is commutative:
0 ( M , d V ) i 1 ( A ^ 1 , d ^ 1 ) p 1 ( A , d ) 0 η η 0 ( M , d V ) i 2 ( A ^ 2 , d ^ 2 ) p 2 ( A , d ) 0 .
Now, we are ready to classify abelian extensions of a MD λ 3-LieA.
Theorem 3. 
There is a one-to-one correspondence between equivalence classes of abelian extensions of a MD λ 3-LieA ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) and the second cohomology group H md 3 Lie ˘ 2 ( A , M ) of ( A , [ , , ] , d ) with coefficients in the representation ( M , ϱ , d M ) .
Proof. 
Assume that ( A ^ 1 , [ , , ] A ^ 1 , d ^ 1 ) and ( A ^ 2 , [ , , ] A ^ 2 , d ^ 2 ) are two equivalent abelian extensions of ( A ,   [ , , ] , d ) by ( M , [ , , ] M , d M ) with the associated isomorphism η : ( A ^ 1 , [ , , ] A ^ 1 , d ^ 1 ) ( A ^ 2 , [ , , ] A ^ 2 , d ^ 2 ) . Let s 1 be a section of ( A ^ 1 , [ , , ] A ^ 1 , d ^ 1 ) . As p 2 η = p 1 , we have
p 2 ( η s 1 ) = p 1 s 1 = id A .
That is, η s 1 is a section of ( A ^ 2 , [ , , ] A ^ 2 , d ^ 2 ) . Denote s 2 : = η s 1 . Since η is an isomorphism of MD λ 3-LieAs such that η | M = id M , we obtain
υ 2 ( a 1 , a 2 , a 3 ) = [ s 2 ( a 1 ) , s 2 ( a 2 ) , s 2 ( a 3 ) ] A ^ 2 s 2 ( [ a 1 , a 2 , a 3 ] ) = [ η ( s 1 ( a 1 ) ) , η ( s 1 ( a 2 ) ) , η ( s 1 ( a 3 ) ) ] A ^ 2 η ( s 1 ( [ a 1 , a 2 , a 3 ] ) ) = η [ s 1 ( a 1 ) , s 1 ( a 2 ) , s 1 ( a 3 ) ] A ^ 1 s 1 ( [ a 1 , a 2 , a 3 ] ) = η ( υ 1 ( a 1 , a 2 , a 3 ) ) = υ 1 ( a 1 , a 2 , a 3 )
and
μ 2 ( a 1 ) = d ^ 2 ( s 2 ( a 1 ) ) s 2 ( d ( a 1 ) ) = d ^ 2 η ( s 1 ( a 1 ) ) η s 1 ( d ( a 1 ) ) = η d ^ 1 ( s 1 ( a 1 ) ) s 1 ( d ( a 1 ) ) = η ( μ 1 ( a 1 ) ) = μ 1 ( a 1 ) .
Hence, all equivalent abelian extensions give rise to the same element in H md 3 Lie ˘ 2 ( A , M ) .
Conversely, suppose that [ ( f 1 , g 1 ) ] = [ ( f 2 , g 2 ) ] H md 3 Lie ˘ 2 ( A , M ) , and we can construct two abelian extensions 0 ( M , [ , , ] M , d M ) ( A M , [ , , ] ρ f 1 , d g 1 ) p 1 ( A , [ , , ] , d ) 0 and 0 ( M , [ , , ] M , d M ) ( A M , [ , , ] ρ f 2 , d g 2 ) p 2 ( A , [ , , ] , d ) 0 via Equations (21) and (22). Then, there exists a linear map ι : A M such that
( f 2 , g 2 ) = ( f 1 , g 1 ) + ( ι ) .
Define linear map η ι : A M A M by η ι ( a 1 + u 1 ) : = a 1 + ι ( a 1 ) + u 1 , a 1 A , u 1 M . Then, η ι is an isomorphism of these two abelian extensions ( A M , [ , , ] ρ f 1 , d g 1 ) and ( A M , [ , , ] ρ f 2 , d g 2 ) . □
Remark 4. 
In particular, any vector space M with linear transformation d M can serve as a trivial representation of ( A , [ , , ] , d ) . In this situation, central extensions of ( A , [ , , ] , d ) by ( M , [ , , ] M , d M ) are classified by the second cohomology group H md 3 Lie ˘ 2 ( A , M ) of ( A , [ , , ] , d ) with the coefficient in the trivial representation ( M , ρ = 0 , d M ) .

5. T -Extensions of MD λ 3-LieAs

The T -extension of a 3-Lie algebra was studied in [11]. In this section, we consider T -extensions of MD λ 3-LieAs by the second cohomology groups with the coefficient in a coadjoint representation.
Let ( A , [ , , ] , d ) be a MD λ 3-LieA and A be the dual space of A . By Example 6, ( A ; a d , d ) is a coadjoint representation of ( A , [ , , ] , d ) . Suppose that ( f , g ) C md 3 Lie ˘ 2 ( A , A ) . Define a trilinear map [ , , ] f : 3 ( A A ) A A and a linear map d g : A A A A , respectively, by
[ a 1 + α 1 , a 2 + α 2 , a 3 + α 3 ] f = [ a 1 , a 2 , a 3 ] + a d ( a 2 , a 3 ) α 1 + a d ( a 3 , a 1 ) α 2 + a d ( a 1 , a 2 ) α 3 + f ( a 1 , a 2 , a 3 ) ,
d g ( a 1 + α 1 ) = d ( a 1 ) d ( α 1 ) + g ( a 1 ) , a 1 , a 2 , a 3 A , α 1 , α 2 , α 3 A .
Similar to Proposition 7, we have the following result.
Proposition 9. 
With the above notations, ( A A , [ , , ] f , d g ) is a MD λ 3-LieA if and only if ( f , g ) is a 2-cocycle in the cohomology of the MD λ 3-LieA ( A , [ , , ] , d ) with the coefficient in the representation ( A ; a d , d ) .
Definition 11. 
The MD λ 3-LieA ( A A , [ , , ] f , d g ) is called the T -extension of the MD λ 3-LieA ( A , [ , , ] , d ) . Denote the T -extension by T ( f , g ) ( A ) = ( T ( A ) = A A , [ , , ] f , d g ) .
Definition 12. 
Let ( A , [ , , ] , d ) be a MD λ 3-LieA. ( A , [ , , ] , d ) is said to be metrised if it has a non-degenerate symmetric bilinear form ϖ A 2 A which satisfies
ϖ A ( [ a 1 , a 2 , a 3 ] , a 4 ) + ϖ A ( a 3 , [ a 1 , a 2 , a 4 ] ) = 0 ,
ϖ A ( d ( a 1 ) , a 2 ) + ϖ A ( a 1 , d ( a 2 ) ) = 0 , a 1 , a 2 , a 3 , a 4 A .
We may also say that ( A , [ , , ] , d , ϖ A ) is a metric MD λ 3-LieA.
Define a bilinear map ϖ : 2 T ( A ) A by
ϖ ( a 1 + α 1 , a 2 + α 2 ) = α 1 ( a 2 ) + α 2 ( a 1 ) , a 1 , a 2 A , α 1 , α 2 A
Proposition 10. 
With the above notations, ( T ( f , g ) ( A ) , ϖ ) is a metric MD λ 3-LieA if and only if
f ( a 1 , a 2 , a 3 ) ( a 4 ) + f ( a 1 , a 2 , a 4 ) ( a 3 ) = 0 , g ( a 1 ) ( a 2 ) + g ( a 2 ) ( a 1 ) = 0 , a 1 , a 2 , a 3 , a 4 A .
Proof. 
For any a 1 , a 2 , a 3 , a 4 A , α 1 , α 2 , α 3 , α 4 A , using Equations (6), (27)–(31) we have
ϖ ( [ a 1 + α 1 , a 2 + α 2 , a 3 + α 3 ] f , a 4 + α 4 ) + ϖ ( a 3 + α 3 , [ a 1 + α 1 , a 2 + α 2 , a 4 + α 4 ] f ) = ϖ ( [ a 1 , a 2 , a 3 ] + a d ( a 2 , a 3 ) α 1 + a d ( a 3 , a 1 ) α 2 + a d ( a 1 , a 2 ) α 3 + f ( a 1 , a 2 , a 3 ) , a 4 + α 4 ) + ϖ ( a 3 + α 3 , [ a 1 , a 2 , a 4 ] + a d ( a 2 , a 4 ) α 1 + a d ( a 4 , a 1 ) α 2 + a d ( a 1 , a 2 ) α 4 + f ( a 1 , a 2 , a 4 ) ) = α 4 ( [ a 1 , a 2 , a 3 ] ) + a d ( a 2 , a 3 ) α 1 ( a 4 ) + a d ( a 3 , a 1 ) α 2 ( a 4 ) + a d ( a 1 , a 2 ) α 3 ( a 4 ) + f ( a 1 , a 2 , a 3 ) ( a 4 ) + α 3 ( [ a 1 , a 2 , a 4 ] ) + a d ( a 2 , a 4 ) α 1 ( a 3 ) + a d ( a 4 , a 1 ) α 2 ( a 3 ) + a d ( a 1 , a 2 ) α 4 ( a 3 ) + f ( a 1 , a 2 , a 4 ) ( a 3 ) = α 4 ( [ a 1 , a 2 , a 3 ] ) α 1 ( [ a 2 , a 3 , a 4 ] α 2 ( [ a 3 , a 1 , a 4 ] ) α 3 ( [ a 1 , a 2 , a 4 ] ) + f ( a 1 , a 2 , a 3 ) ( a 4 ) + α 3 ( [ a 1 , a 2 , a 4 ] ) α 1 ( [ a 2 , a 4 , a 3 ] ) α 2 ( [ a 4 , a 1 , a 3 ] ) α 4 ( a 1 , a 2 , a 3 ) + f ( a 1 , a 2 , a 4 ) ( a 3 ) = f ( a 1 , a 2 , a 3 ) ( a 4 ) + f ( a 1 , a 2 , a 4 ) ( a 3 ) = 0 , ϖ ( d g ( a 1 + α 1 ) , a 2 + α 2 ) + ϖ ( a 1 + α 1 , d g ( a 2 + α 2 ) ) = ϖ ( d ( a 1 ) d ( α 1 ) + g ( a 1 ) , a 2 + α 2 ) + ϖ ( a 1 + α 1 , d ( a 2 ) d ( α 2 ) + g ( a 2 ) ) = d ( α 1 ) ( a 2 ) + g ( a 1 ) ( a 2 ) + α 2 ( d ( a 1 ) ) + α 1 ( d ( a 2 ) ) d ( α 2 ) ( a 1 ) + g ( a 2 ) ( a 1 ) = α 1 ( d ( a 2 ) ) + g ( a 1 ) ( a 2 ) + α 2 ( d ( a 1 ) ) + α 1 ( d ( a 2 ) ) α 2 ( d ( a 1 ) ) + g ( a 2 ) ( a 1 ) = g ( a 1 ) ( a 2 ) + g ( a 2 ) ( a 1 ) = 0 .
Thus, we obtain the result. □
Let ( A , [ , , ] , d , ϖ A ) be a metric MD λ 3-LieA, then ϖ A induces an isomorphism ϖ A : A A defined by
ϖ A ( a 1 ) , a 2 = ϖ A ( a 1 , a 2 ) , a 1 , a 2 A .
Proposition 11. 
With the above notations, ϖ A is an isomorphism from the adjoint representation ( A ; a d , d ) to the coadjoint representation ( A ; a d , d ) .
Proof. 
For any a 1 , a 2 , a 3 , a 4 A , by Equations (6) and (29), we have
ϖ A ( a d ( a 1 , a 2 ) a 3 ) , a 4 = ϖ A ( [ a 1 , a 2 , a 3 ] , a 4 ) = ϖ A ( a 3 , [ a 1 , a 2 , a 4 ] ) = ϖ A ( a 3 ) , [ a 1 , a 2 , a 4 ] = ϖ A ( a 3 ) , a d ( a 1 , a 2 ) a 4 = ( a d ( a 1 , a 2 ) ) ϖ A ( a 3 ) , a 4 ,
which implies that ϖ A ( a d ( a 1 , a 2 ) a 3 ) = ( a d ( a 1 , a 2 ) ) ϖ A ( a 3 ) .
In addition, for any a 1 , a 2 A , by Equations (6) and (30), we have
ϖ A ( d ( a 1 ) ) , a 2 = ϖ A ( d ( a 1 ) , a 2 ) = ϖ A ( a 1 , d ( a 2 ) ) = ϖ A ( a 1 ) , d ( a 2 ) = d ϖ A ( a 1 ) , a 2 ,
which implies that ϖ A ( d ( a 1 ) ) = d ϖ A ( a 1 ) . Therefore, ϖ A is an isomorphism from ( A ; a d , d ) to ( A ; a d , d ) . □

Author Contributions

Writing—original draft, W.T.; Supervision, H.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Innovation Exploration and Academic Talent Project of GUFE (Grant No. 2022XSXMB11), the Scientific Research Foundation for Advanced Talents of GUFE (Grant No. 2022YJ007), the Science and Technology Program of Guizhou Province (Grant No. QKHZC[2023]372), the Research Foundation for Science & Technology Innovation Team of Guizhou Province (Grant No. QJJ[2023]063).

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bagger, J.; Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 2008, 77, 065008. [Google Scholar] [CrossRef]
  2. Gustavsson, A. Algebraic structure on parallel M2-branes. Nuclear Phys. B 2009, 811, 66–76. [Google Scholar] [CrossRef]
  3. Filippov, V.T. n-Lie algebras. Sib. Mat. Zh. 1985, 26, 126–140. [Google Scholar] [CrossRef]
  4. Cherkis, S.; Samann, C. Multiple M2-branes and generalized 3-Lie algebras. Phys. Rev. 2008, 78, 066019. [Google Scholar] [CrossRef]
  5. Ho, P.; Hou, R.; Matsuo, Y. Lie 3-algebra and multiple M2-branes. J. High Energy Phys. 2008, 6, 020. [Google Scholar] [CrossRef]
  6. Papadopoulos, G. M2-branes, 3-Lie algebras and Plucker relations. J. High Energy Phys. 2008, 5, 054. [Google Scholar] [CrossRef]
  7. Arfa, A.; Fraj, N.B.; Makhlouf, A. Cohomology and deformations of n-Lie algebra morphisms. J. Geom. Phys. 2018, 132, 64–74. [Google Scholar] [CrossRef]
  8. Kasymov, S.M. On a theory of n-Lie algebras (Russian). Algebra Log. 1987, 26, 277–297. [Google Scholar] [CrossRef]
  9. Liu, J.; Sheng, Y.; Zhou, Y.; Bai, C. Nijenhuis operators on n-Lie algebras. Commun. Theor. Phys. 2016, 65, 659–670. [Google Scholar] [CrossRef]
  10. Liu, J.; Makhlouf, A.; Sheng, Y. A new approach to representations of 3-Lie algebras and abelian extensions. Algebr. Represent. Theor. 2017, 20, 1415–1431. [Google Scholar] [CrossRef]
  11. Liu, W.; Zhang, Z. T*-extension of a 3-Lie algebra. Linear Multilinear Algebra 2012, 60, 583–594. [Google Scholar] [CrossRef]
  12. Mignel, J.; Farrill, F.O. Deformations of 3-algebras. J. Math. Phys. 2009, 50, 113514. [Google Scholar]
  13. Sheng, Y.; Tang, R. Symplectic, product and complex structures on 3-Lie algebras. J. Algebra 2018, 208, 256–300. [Google Scholar] [CrossRef]
  14. Takhtajan, L. Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras. St. Petersburg Math. J. 1995, 6, 429–438. [Google Scholar]
  15. Xu, S. Cohomology, derivtions and abelian extensions of 3-Lie algebras. J. Algebra Appl. 2019, 7, 1950130. [Google Scholar] [CrossRef]
  16. Zhang, T. Deformations and Extensions of 3-Lie algebras. arXiv 2014, arXiv:1401.4656. [Google Scholar]
  17. Zhao, J.; Liu, J.; Sheng, Y. Cohomologies and relative Rota-Baxter-Nijenhuis structures of 3-LieRep pairs. Linear Multilinear Algebra 2021, 70, 6240–6264. [Google Scholar] [CrossRef]
  18. Voronov, T. Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 2005, 202, 133–153. [Google Scholar] [CrossRef]
  19. Magid, A. Lectures on Differential Galois Theory; University Lecture Series; American Mathematical Society: Providence, RI, USA, 1994; Volume 7. [Google Scholar]
  20. Ayala, V.; Kizil, E.; Tribuzy, I.D. On an algorithm for finding derivations of Lie algebras. Proyecciones 2012, 31, 81–90. [Google Scholar] [CrossRef]
  21. Doubek, M.; Lada, T. Homotopy derivations. J. Homotopy Relat. Struc. 2016, 11, 599–630. [Google Scholar] [CrossRef]
  22. Loday, L. On the operad of associative algebras with derivation. Georgian Math. J. 2010, 17, 347–372. [Google Scholar] [CrossRef]
  23. Tang, R.; Frégier, Y.; Sheng, Y. Cohomologies of a Lie algebra with a derivation and applications. J. Algebra 2019, 534, 65–99. [Google Scholar] [CrossRef]
  24. Guo, S.; Saha, R. On 3-Lie algebras with a derivation. Afr. Mat. 2022, 33, 60. [Google Scholar] [CrossRef]
  25. Xu, S.; Liu, J. Cohomologies of 3-Lie algebras with derivations. arXiv 2021, arXiv:2110.04215. [Google Scholar]
  26. Das, A. Leibniz algebras with derivations. J. Homotopy Relat. Str. 2021, 16, 245–274. [Google Scholar] [CrossRef]
  27. Guo, S. Central extensions and deformations of Lie triple systems with a derivation. J. Math. R. Appl. 2022, 42, 189–198. [Google Scholar]
  28. Sun, Q.; Chen, S. Cohomologies and deformations of Lie triple systems with derivations. J. Alg. Appl. 2022, 2024, 2450053. [Google Scholar] [CrossRef]
  29. Sun, Q.; Wu, Z. Cohomologies of n-Lie algebras with derivations. Mathematics 2021, 9, 2452. [Google Scholar] [CrossRef]
  30. Wu, X.; Ma, Y.; Sun, B.; Chen, L. Cohomology of Leibniz triple systems with derivations. J. Geom. Phys. 2022, 179, 104594. [Google Scholar] [CrossRef]
  31. Wu, X.; Ma, Y.; Sun, B.; Chen, L. Abelian extensions of Lie triple systems with derivations. Electron. Rese. Arch. 2022, 30, 1087–1103. [Google Scholar] [CrossRef]
  32. Bai, R.; Guo, L.; Li, J.; Wu, Y. Rota-Baxter 3-Lie algebras. J. Math. Phys. 2013, 54, 063504. [Google Scholar] [CrossRef]
  33. Das, A. Cohomology and deformations of weighted Rota-Baxter operators. J. Math. Phys. 2022, 63, 091703. [Google Scholar] [CrossRef]
  34. Guo, L.; Keigher, W. On differential Rota-Baxter algebras. J. Pure Appl. Algebra 2008, 212, 522–540. [Google Scholar] [CrossRef]
  35. Guo, L.; Regensburger, G.; Rosenkranz, M. On integro-differential algebras. J. Pure Appl. Algebra 2014, 218, 456–471. [Google Scholar] [CrossRef]
  36. Guo, L.; Li, Y.; Sheng, Y.; Zhou, G. Cohomology, extensions and deformations of differential algebras with any weights. Theor. Appl. Categ. 2022, 38, 1409–1433. [Google Scholar]
  37. Wang, K.; Zhou, G. Deformations and homotopy theory of Rota-Baxter algebras of any weight. arXiv 2021, arXiv:2108.06744. [Google Scholar]
  38. Guo, S.; Qin, Y.; Wang, K.; Zhou, G. Deformations and cohomology theory of Rota-Baxter 3-Lie algebras of arbitrary weights. J. Geom. Phys. 2023, 183, 104704. [Google Scholar] [CrossRef]
  39. Hou, S.; Sheng, Y.; Zhou, Y. 3-post-Lie algebras and relative Rota-Baxter operators of nonzero weight on 3-Lie algebras. J. Algebra 2023, 615, 103–129. [Google Scholar] [CrossRef]
  40. Sun, Q.; Chen, S. Representations and cohomologies of differential 3-Lie algebras with any weight. arXiv 2022, arXiv:2204.03171. [Google Scholar]
  41. Das, A. A cohomological study of modified Rota-Baxter algebras. arXiv 2022, arXiv:2207.02273. [Google Scholar]
  42. Li, Y.; Wang, D. Cohomology and Deformation theory of Modified Rota-Baxter Leibniz algebras. arXiv 2022, arXiv:2211.09991. [Google Scholar]
  43. Mondal, B.; Saha, R. Cohomology of modified Rota-Baxter Leibniz algebra of weight κ. arXiv 2022, arXiv:2211.07944. [Google Scholar]
  44. Peng, X.; Zhang, Y.; Gao, X.; Luo, Y. Universal enveloping of (modified) λ-differential Lie algebras. Linear Multilinear Algebra 2022, 70, 1102–1127. [Google Scholar] [CrossRef]
  45. Daletskii, Y.I.; Takhtajan, L.A. Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys. 1997, 39, 127–141. [Google Scholar] [CrossRef]
  46. Bai, R.; Li, Q.; Zhang, K. Generalized Derivations of 3-Lie Algebras. Chin. Ann. Math. 2017, 38, 447–460. [Google Scholar]
  47. Rotkiewicz, M. Irreducible identities of n-Lie algebras. Acta. Math. Univ. Comenianae LXXII 2003, 1, 23–44. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Teng, W.; Zhang, H. Deformations and Extensions of Modified λ-Differential 3-Lie Algebras. Mathematics 2023, 11, 3853. https://doi.org/10.3390/math11183853

AMA Style

Teng W, Zhang H. Deformations and Extensions of Modified λ-Differential 3-Lie Algebras. Mathematics. 2023; 11(18):3853. https://doi.org/10.3390/math11183853

Chicago/Turabian Style

Teng, Wen, and Hui Zhang. 2023. "Deformations and Extensions of Modified λ-Differential 3-Lie Algebras" Mathematics 11, no. 18: 3853. https://doi.org/10.3390/math11183853

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop