Next Article in Journal
Memory-Efficient Discrete Cosine Transform Domain Weight Modulation Transformer for Arbitrary-Scale Super-Resolution
Previous Article in Journal
Malicious Traffic Classification via Edge Intelligence in IIoT
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Asymptotic Stability and Dependency of a Class of Hybrid Functional Integral Equations

by
Ahmed M. A. El-Sayed
1,†,
Malak M. S. Ba-Ali
2,*,† and
Eman M. A. Hamdallah
1,†
1
Faculty of Science, Alexandria University, Alexandria 21521, Egypt
2
Faculty of Science, Princess Nourah Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2023, 11(18), 3953; https://doi.org/10.3390/math11183953
Submission received: 24 August 2023 / Revised: 11 September 2023 / Accepted: 15 September 2023 / Published: 17 September 2023

Abstract

:
Here, we discuss the solvability of a class of hybrid functional integral equations by applying Darbo’s fixed point theorem and the technique of the measure of noncompactness (MNC). This study has been located in space BC ( R + ) . Furthermore, we prove the asymptotic stability of the solution of our problem on R + . We introduce the idea of asymptotic dependency of the solutions on some parameters for that class. Moreover, general discussion, examples, and remarks are demonstrated.

1. Introduction

The study of delay functional integral equations has received much consideration over the last few decades. Further studies and results for such kinds of problems may be found in [1,2,3] and the references therein.
The technique of MNC [4] in the Banach space B C ( R + ) had been effectively utilized by J. Banaś (see [5,6]) for demonstrating that asymptotic stable solutions for various functional equations have been established (see [7,8]).
Numerous practical real-world applications of quadratic integral equations are established. For various studies on the solvability of different classes of nonlinear equations, see [1,9,10,11,12,13].
Quadratic integral equations continuously emerge in numerous problems, such as the theory of radiative transfer, the kinetic theory of gases, the theory of neutron transport, the queuing theory, and the traffic theory.
Although the existence results in each of these monographs are included [1,11,12,13], their primary goal was to show a unique method or strategy as well as results pertaining to different existence for particular quadratic integral equations.
The significance of the investigations of hybrid functional integral and quadratic functional integral problems locates within the reality that this type involves different dynamic systems in particular cases. This class of hybrid differential equations involves the perturbations of original differential equations in several ways. A sharp classification of distinctive sorts of perturbations of differential equations shows up in Dhage [14], which can be treated with hybrid fixed point theory.
The authors in [13,15] discussed the two equations
d d r ϑ ( r ) h ( r , ϑ ( ϕ 1 ( r ) ) ) g ( r , ϑ ( ϕ 2 ( r ) ) ) = f r , D α ϑ ( r ) h ( r , ϑ ( ϕ 1 ( r ) ) ) g ( r , ϑ ( ϕ 2 ( r ) ) ) a . e .
ϑ ( r ) h ( r , ϑ ( r ) ) g ( r , ϑ ( r ) ) = f 1 r , ϑ ( r ) h ( r , ϑ ( r ) ) g ( r , ϑ ( r ) ) , 0 ϕ ( r ) f 2 r , s , ϑ ( s ) h ( s , ϑ ( s ) ) g ( s , ϑ ( s ) ) d s ,
in a bounded interval. Also, they studied the solvability of these problems using the technique of MNC in a finite interval and also discussed the continuous dependency.
Existence and stability results for Atangana–Baleanu fractional problems are established in [16], BVP for a nonlinear Hadamard fractional differential equation is discussed in [17,18], and, for fractional systems, see [19,20,21].
Here, consider the class of hybrid functional integral equation
ϑ ( t ) h ( t , ϑ ( t ) ) g ( t , ϑ ( t ) ) = f ( t , g 1 t , ϑ ( β 1 ( t ) ) h ( t , ϑ ( β 1 ( t ) ) ) g ( t , ϑ ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 t , ς , ϑ ( ς ) h ( ς , ϑ ( ς ) ) g ( ς , ϑ ( ς ) ) d ς , g 2 t , ϑ ( β 3 ( t ) ) h ( t , ϑ ( β 3 ( t ) ) ) g ( t , ϑ ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 t , ς , ϑ ( ς ) h ( ς , ϑ ( ς ) ) g ( ς , ϑ ( ς ) ) d ς ) , t 0 .
Our aim here is to establish the solvability and discuss some asymptotic stability facts of the solution ϑ B C ( R + ) of (1). The main tool in our study is applying Darbo’s fixed point [4] and MNC technique.
Furthermore, the asymptotic dependency of ϑ B C ( R + ) on the parameter λ 0 and on the functions g 1 , g 2 , β 2 , and β 4 has been studied. Some special cases and examples have been discussed.
Let
ϑ ( t ) h ( t , ϑ ( t ) ) g ( t , ϑ ( t ) ) = ν ( t ) ,
and, easily, we obtain
ϑ ( t ) = h ( t , ϑ ( t ) ) + ν ( t ) g ( t , ϑ ( t ) ) , t 0
as a solution of (1), which implies that ν is a solution of
ν ( t ) = f t , g 1 ( t , ν ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ( ς ) ) d ς , g 2 ( t , ν ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν ( ς ) ) d ς , t 0 .
We arrange our article just like that: we conclude the solvability of (3) in B C ( R + ) , and then the asymptotic stability of the solution ν B C ( R + ) of (3) is discussed in Section 2. The main theorems for the existence of the solutions ϑ B C ( R + ) and the asymptotic stability and dependency of the solution ϑ B C ( R + ) on the parameter λ 0 , and on the functions g 1 , g 2 , β 2 and β 4 have been established. Finally, some general remarks and comments will be provided.
The class B C ( R + ) of all bounded and continuous functions in R + , with an internal composition law is noted by
( . ) : X × X X , ( x , y ) x . y ,
which is associative and bilinear.
A normed algebra is an algebra endowed with a norm satisfying the following property:
For all x , y X , we have
x . y x . y .
A complete normed algebra is called a Banach algebra.
Now, let ϑ Y B C ( R + ) and ε 0 be provided, defined as ω T ( ϑ , ε ) , T 0 , the modulus of continuity of the function ϑ on [ 0 , T ]
ω T ( ϑ , ε ) = s u p [ | ϑ ( t ) ϑ ( ς ) | : t , ς [ 0 , T ] , | t ς | ε ]
and
ω T ( Y , ε ) = s u p [ ω T ( ϑ , ε ) : ϑ Y ] .
Also,
ω 0 T ( Y ) = lim ε 0 ω T ( Y , ε ) , ω 0 ( Y ) = lim T ω 0 T ( Y )
and
d i a m Y ( t ) = s u p { | ϑ ( t ) ν ( t ) | , ϑ , ν Y } .
The MNC on B C ( R + ) has the form [22,23]
μ ( Y ) = ω 0 ( Y ) + lim t s u p d i a m Y ( t ) .
Theorem 1 
([4]). Let C be a nonempty, bounded, closed, and convex subset of a Banach space ε and let Y : C C be a continuous mapping. Assume that there exists a constant K [ 0 , 1 ) such that μ ( Y ) K μ ( ) for any nonempty subset ∧ of C, where μ is an MNC defined in ε. Then, Y has at least one fixed point in C.

2. Existence of Solutions

To achieve our goals, assume that
(i)
β ι : R + R + , β ι ( t ) t , ι = 1 , 2 , 3 , 4 are continuous.
(ii)
f : R + × R × R × R R is continuous in t R + , ξ , υ , w R and satisfies Lipschitz condition,
| f ( t , ξ , υ , w ) f ( t , ξ 1 , υ 1 , w 1 ) | b ( | ξ ξ 1 | + | υ υ 1 | + | w w 1 | ) , ( t , ξ , υ , w ) , ( t , ξ 1 , υ 1 , w 1 ) R + × R × R × R , b > 0 .
(iii)
g i : R + × R R , i = 1 , 2 are continuous in t R + , ξ R and satisfy Lipschitz condition,
| g i ( t , ξ ) g i ( t , ξ 1 ) | b i | ξ ξ 1 | , ( t , ξ ) , ( t , ξ 1 ) R + × R , b i > 0 .
(iv)
f i : R + × R + × R R , i = 1 , 2 are Carathéodory functions, which are measurable in t , ς R + × R + , ν R and continuous in ν R , t , ς R + × R + , and there exist measurable and bounded functions k i , c i : R + × R + R , where
| f i ( t , ς , ν ) | k i ( t , ς ) + c i ( t , ς ) | ν | , ( t , ς ) R + × R +
and
lim r 0 β j ( r ) k i ( r , ς ) d ς = 0 , lim r 0 β j ( r ) c i ( r , ς ) d ς = 0 , j = 2 , 4 , sup r R + 0 β j ( r ) k i ( r , ς ) d ς = k i , sup r R + 0 β j ( t ) c i ( t , ς ) d ς = c i , j = 2 , 4 .
( v )
For a positive constant r satisfying the equation
b b 2 c 2 r 2 + ( b b 1 + b λ c 1 + b c 2 m 2 * + b b 2 k 2 1 ) r + m * + b m 1 * + b λ k 1 + b k 2 m 2 * = 0 .
From Equation (4), we receive
| f ( r , ξ , u , w ) | | f ( r , 0 , 0 , 0 ) | | f ( r , ξ , u , w ) f ( r , 0 , 0 , 0 ) | b ( | ξ | + | u | + | w | ) , | f ( r , ξ , u , w ) | | f ( r , 0 , 0 , 0 ) | + b ( | ξ | + | u | + | w | ) | f ( r , ξ , u , w ) | | m ( r ) | + b ( | ξ | + | u | + | w | ) ,
where
m ( t ) = | f ( t , 0 , 0 , 0 ) | , m B C ( R + ) and m * = sup t R + | m ( t ) | < .
In the same manner, from Equation (5), we receive
| g i ( t , ξ ) | | m i ( t ) | + b i | ξ | ,
where
m i ( t ) = | g i ( t , 0 ) | , m i B C ( R + ) and m i * = sup t R + | m i ( t ) | < .
Theorem 2. 
Suppose that ( i ) ( i v ) hold. Then, we have a solution ν B C ( R + ) for (3).
Proof. 
Let
Q r = { ν B C ( R + ) : ν r } , r = m * + b m 1 * + b b 1 r + b λ k 1 + b λ c 1 r + b m 2 * k 2 + b m 2 * c 2 r + b b 2 k 2 r + b b 2 c 2 r 2 .
Associate the operator
F ν ( t ) =
f t , g 1 ( t , ν ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ( ς ) ) d ς , g 2 ( t , ν ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν ( ς ) ) d ς , t 0 .
For ν Q r , then
| F ν ( t ) | = | f t , g 1 ( t , ν ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ( ς ) ) d ς , g 2 ( t , ν ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν ( ς ) ) d ς | | m ( t ) | + b | m 1 ( t ) | + b 1 | ν ( β 1 ( t ) ) | + b λ 0 β 2 ( t ) ( k 1 ( t , ς ) + c 1 ( t , ς ) | ν ( ς ) | ) d ς + b | m 2 ( t ) | + b 2 | ν ( β 3 ( t ) ) | · 0 β 4 ( t ) ( k 2 ( t , ς ) + c 2 ( t , ς ) | ν ( ς ) | ) d ς ,
then
F ν m * + b m 1 * + b b 1 ν + b λ 0 β 2 ( t ) k 1 ( t , ς ) d ς + ν 0 β 2 ( t ) c 1 ( t , ς ) d ς + b ( m 2 * + b 2 ν ) · ( 0 β 4 ( t ) k 2 ( t , ς ) d ς + ν 0 β 4 ( t ) c 2 ( t , ς ) d ς ) m * + b m 1 * + b b 1 r + b λ ( k 1 + c 1 r ) + ( b m 2 * + b b 2 r ) · ( k 2 + c 2 r ) m * + b m 1 * + b b 1 r + b λ k 1 + b λ c 1 r + b m 2 * k 2 + b m 2 * c 2 r + b b 2 k 2 r + b b 2 c 2 r 2 .
Thus, the mapping F draws the set Q r into Q r .
Then, take δ > 0 and take ν 1 , ν 2 Q r , such that ν 2 ν 1 δ , and then
| F ν 2 ( t ) F ν 1 ( t ) | =
| f t , g 1 ( t , ν 2 ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν 2 ( ς ) ) d ς , g 2 ( t , ν 2 ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν 2 ( ς ) ) d ς f t , g 1 ( t , ν 1 ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν 1 ( ς ) ) d ς , g 2 ( t , ν 1 ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν 1 ( ς ) ) d ς |
b | g 1 ( t , ν 2 ( β 1 ( t ) ) ) g 1 ( ν 1 ( β 1 ( t ) ) ) | + b λ 0 β 2 ( t ) | f 1 ( t , ς , ν 2 ( ς ) ) f 1 ( t , ς , ν 1 ( ς ) ) | d ς + b | g 2 ( t , ν 2 ( β 3 ( t ) ) ) g 2 ( ν 1 ( β 3 ( t ) ) ) | · 0 β 4 ( t ) | f 2 ( t , ς , ν 2 ( ς ) ) | d ς + b | g 2 ( t , ν 1 ( β 3 ( t ) ) ) | · 0 β 4 ( t ) | f 2 ( t , ς , ν 2 ( ς ) ) f 2 ( t , ς , ν 1 ( ς ) ) | d ς .
( i * ) Choose T > 0 , satisfying t T , and
F ν 2 F ν 1 b b 1 ν 2 ν 1 + 2 b λ 0 β 2 ( t ) k 1 ( t , ς ) d ς + r 0 β 2 ( t ) c 1 ( t , ς ) d ς + b b 2 ν 2 ν 1 · 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς + b ( m 2 * + b 2 r ) ( 2 0 β 4 ( t ) k 2 ( t , ς ) d ς + 2 r 0 β 4 ( t ) c 2 ( t , ς ) d ς ) b b 1 δ + 2 b λ ( ϵ 1 + r ϵ 2 ) + b b 2 δ ( ϵ 3 + ϵ 4 r ) + 2 b ( m 2 * + b 2 r ) ( ϵ 3 + ϵ 4 r ) = ϵ .
( i i * ) Also, for T > 0 , t [ 0 , T ] ; thus, from (6), we find
F ν 2 F ν 1 b b 1 ν 2 ν 1 + b λ 0 β 2 ( t ) ω ( E ) d s + b b 2 ν 2 ν 1 ( 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς ) + b ( m 2 * + b 2 r ) 0 β 4 ( t ) ω ( E ) d ς b b 1 δ + b λ ω ( E ) T + b b 2 ( ϵ 3 + ϵ 4 r ) δ + b ( m 2 * + b 2 r ) ω ( E ) T
where ω ( E ) = s u p { | f i ( r , s , ν 2 ( ς ) ) f i ( r , s , ν 1 ( ς ) ) | : t , s [ 0 , T ] , ν 1 , ν 2 [ r , r ] , | ν 2 ν 1 | < δ } , i = 1 , 2 . Then, from uniform continuity of the functions f i on [ 0 , T ] × [ 0 , T ] × [ r , r ] ; therefore, ω ( E ) 0 as δ . In consequence, F maps Q r continuously.
Next, let Y Q r be nonempty. Then, for any ν 2 , ν 1 Y and T > 0 satisfying t T , from (6), we find
| F ν 2 ( t ) F ν 1 ( t ) | =
b b 1 | ν 2 ( β 1 ( t ) ) ν 1 ( β 1 ( t ) ) | + 2 b λ 0 β 2 ( t ) k 1 ( t , ς ) d ς + r 0 β 2 ( t ) c 1 ( t , ς ) d ς + b b 2 | ν 2 ( β 3 ( t ) ) ν 1 ( β 3 ( t ) ) | · 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς + 2 b ( m 2 * + b 2 r ) ( 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς ) b b 1 d i a m Y ( t ) + 2 b λ 0 β 2 ( t ) k 1 ( t , ς ) d ς + r 0 β 2 ( t ) c 1 ( t , ς ) d ς + b b 2 d i a m Y ( t ) ( 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς ) + 2 b ( m 2 * + b 2 r ) · ( 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς ) .
Hence, we obtain
d i a m F Y ( t ) b b 1 d i a m Y ( t ) + 2 b λ ( k 1 + c 1 r ) + b b 2 ( k 2 + c 2 r ) d i a m Y ( t ) + 2 b ( m 2 * + b 2 r ) ( k 2 + c 2 r )
lim n s u p d i a m F Y ( t ) b b 1 + b b 2 ( k 2 + c 2 r ) lim n s u p d i a m Y ( t ) .
Let T > 0 and δ > 0 be taken and select a mapping ν Y and t [ 0 , T ] , where | t 2 t 1 | < δ , t 1 t 2 . Take θ f ( δ ) , θ g i ( δ ) , θ f i ( δ ) as defined in [9,13]. Therefore,
| F ν ( t 2 ) F ν ( t 1 ) | = | f t 2 , g 1 ( t 2 , ν ( β 1 ( t 2 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 1 ) ) ) · 0 β 4 ( t 1 ) f 2 ( t 1 , ς , ν ( ς ) ) d ς | | f t 2 , g 1 ( t 2 , ν ( β 1 ( t 2 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) . 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 2 , ν ( β 1 ( t 2 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 2 , ν ( β 1 ( t 2 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 2 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 2 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 2 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 2 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 2 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 2 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 1 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 1 ) ) ) · 0 β 4 ( t 2 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 1 ) ) ) · 0 β 4 ( t 1 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς + f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 1 ) ) ) · 0 β 4 ( t 1 ) f 2 ( t 2 , ς , ν ( ς ) ) d ς f t 1 , g 1 ( t 1 , ν ( β 1 ( t 1 ) ) ) , λ 0 β 2 ( t 1 ) f 1 ( t 1 , ς , ν ( ς ) ) d ς , g 2 ( t 1 , ν ( β 3 ( t 1 ) ) ) · 0 β 4 ( t 1 ) f 2 ( t 1 , ς , ν ( ς ) ) d ς | θ f ( δ ) + b θ g 1 ( δ ) + b b 1 | ν ( β 1 ( t 2 ) ) ν ( β 1 ( t 1 ) ) | + b λ β 2 ( t 1 ) β 2 ( t 2 ) | f 1 ( t 2 , ς , ν ( ς ) ) | d ς + b λ 0 β 2 ( t 2 ) | f 1 ( t 2 , ς , ν ( ς ) ) f 1 ( t 1 , ς , ν ( ς ) ) | d ς + b θ g 2 ( δ ) · 0 β 4 ( t 2 ) | f 2 ( t 2 , ς , ν ( ς ) | d ς + b b 2 | ν ( β 3 ( t 2 ) ) ν ( β 3 ( t 1 ) ) | · 0 β 4 ( t 2 ) | f 2 ( t 2 , ς , ν ( ς ) ) | d ς + b ( m 2 * + b 2 r ) β 4 ( t 1 ) β 4 ( t 2 ) | f 2 ( t 2 , ς , ν ( ς ) ) | d ς + b ( m 2 * + b 2 r ) 0 β 4 ( t 1 ) | f 2 ( t 2 , ς , ν ( ς ) ) f 2 ( t 1 , ς , ν ( ς ) ) | d ς θ f ( δ ) + b θ g 1 ( δ ) + b b 1 s u p { | ν ( β 1 ( t 2 ) ) ν ( β 1 ( t 1 ) ) | } + b λ β 2 ( t 1 ) β 2 ( t 2 ) | f 1 ( t 2 , ς , ν ( ς ) ) | d ς + b λ θ f 1 ( δ ) β 2 ( T ) + b θ g 2 ( δ ) ( k 2 + c 2 r ) + b b 2 ( k 2 + c 2 r ) s u p { | ν ( β 3 ( t 2 ) ) ν ( β 3 ( t 1 ) ) | } + b ( m 2 * + b 2 r ) β 4 ( t 1 ) β 4 ( t 2 ) | f 2 ( t 2 , ς , ν ( ς ) ) | d ς + b ( m 2 * + b 2 r ) θ f 2 ( δ ) β 4 ( T ) θ f ( δ ) + b θ g 1 ( δ ) + b b 1 ω T ( ν , ω T ( β 1 , ϵ ) ) + b λ β 2 ( t 1 ) β 2 ( t 2 ) | f 1 ( t 2 , ς , ν ( ς ) ) | d ς + b λ θ f 1 ( δ ) β 2 ( T ) + b θ g 2 ( δ ) ( k 2 + c 2 r ) + b b 2 ( k 2 + c 2 r ) ω T ( ν , ω T ( β 3 , ϵ ) ) + b ( m 2 * + b 2 r ) · β 4 ( t 1 ) β 4 ( t 2 ) | f 2 ( t 2 , ς , ν ( ς ) ) | d ς + b ( m 2 * + b 2 r ) θ f 2 ( δ ) β 4 ( T ) .
Now, let t 1 , t 2 [ 0 , T ] , | t 2 t 1 | < δ . Then, we deduce that
ω T ( F Y , ϵ ) θ f ( δ ) + b θ g 1 ( δ ) + b b 1 ω T ( Y , ω T ( β 1 , ϵ ) ) + b λ β 2 ( t 1 ) β 2 ( t 2 ) | f 1 ( t 2 , ς , ν ( ς ) ) | d ς + b λ θ f 1 ( δ ) β 2 ( T ) + b θ g 2 ( δ ) ( k 2 + c 2 r ) + b b 2 ( k 2 + c 2 r ) ω T ( Y , ω T ( β 3 , ϵ ) ) + b ( m 2 * + b 2 r ) · β 4 ( t 1 ) β 4 ( t 2 ) | f 2 ( t 2 , ς , ν ( ς ) ) | d ς + b ( m 2 * + b 2 r ) θ f 2 ( δ ) β 4 ( T ) .
From our assumptions, f , g i , i = 1 , 2 are uniform continuity, and ω T ( β 1 , ϵ ) 0 , ω T ( β 3 , ϵ ) 0 as ϵ 0 , we have achieved that θ f ( δ ) 0 , θ g i ( δ ) 0 , θ f i ( δ ) 0 , i = 1 , 2 as δ 0 independent of ν Q r . Consequently, we obtain
ω 0 T ( F Y ) b b 1 + b b 2 ( k 2 + c 2 r ) ω 0 T ( Y )
and as T
ω 0 ( F Y ) b b 1 + b b 2 ( k 2 + c 2 r ) ω 0 ( Y ) .
Now, from (7) and (8),
μ ( F Y ) = b b 1 + b b 2 ( k 2 + c 2 r ) μ ( Y ) .
Since ( b b 1 + b b 2 ( k 2 + c 2 r ) ) < 1 , F is a contraction regarding MNC ( μ ) , which implies that ν Q r is a solution of (3). □
Now, we discuss the asymptotic stability of the solution of (3).
Theorem 3. 
The solution ν B C ( R + ) of Equation (3) is asymptotically stable; that is, for any ϵ * > 0 , there exist T ( ϵ * ) > 0 and r > 0 , satisfying for any two solutions ν , ν ¯ Q r , and then | ν ( t ) ν ¯ ( t ) | ϵ * for t T ( ϵ * ) .
Proof. 
For two solutions ν , ν ¯ Q r of Equation (3), therefore,
| ν ( t ) ν ¯ ( t ) | = | f t , g 1 ( t , ν ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ( ς ) ) d ς , g 2 ( t , ν ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν ( ς ) ) d ς f t , g 1 ( t , ν ¯ ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ¯ ( ς ) ) d ς , g 2 ( t , ν ¯ ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν ¯ ( ς ) ) d ς | b b 1 | ν ( β 1 ( t ) ) ν ¯ ( β 1 ( t ) ) | + 2 b λ 0 β 2 ( t ) k 1 ( t , ς ) d ς + r 0 β 2 ( t ) c 1 ( t , ς ) d ς + b b 2 | ν ( β 3 ( t ) ) ν ¯ ( β 3 ( t ) ) | · ( k 2 + c 2 r ) + 2 b ( m 2 * + b 2 r ) · 0 β 4 ( t ) k 2 ( t , ς ) d ς + r 0 β 4 ( t ) c 2 ( t , ς ) d ς ,
and then
ν ν ¯ b b 1 ν ν ¯ + 2 b λ ( ϵ 1 + r ϵ 2 ) + b b 2 ν ν ¯ · ( k 2 + c 2 r ) + 2 b ( m 2 * + b 2 r ) · ( ϵ 3 + r ϵ 4 ) 2 b λ ( ϵ 1 + r ϵ 2 ) + 2 b ( m 2 * + b 2 r ) . ( ϵ 3 + r ϵ 4 ) ( 1 ( b b 1 + b b 2 ( k 2 + c 2 r ) ) ) ϵ * ,
that is,
| ν ( t ) ν ¯ ( t ) | ν ν ¯ ϵ * .
Therefore ν B C ( R + ) is asymptotically stable. □

3. Main Theorems

Here, we examine the existence of ϑ B C ( R + ) as a solution for the functional Equation (2). Take into account the following assumptions:
(vi)
h : R + × R R and g : R + × R R { 0 } satisfy the following;
they are continuous in t R + , ϑ R satisfy Lipschitz condition,
| h ( t , ϑ ) h ( t , ϑ 1 ) | l 1 | ϑ ϑ 1 | a n d | g ( t , ϑ ) g ( t , ϑ 1 ) | l 2 | ϑ ϑ 1 | , ( t , ϑ ) , ( t , ϑ 1 ) R + × R , l 1 , l 2 > 0 .
(vii)
l 1 + M l 2 < 1 .
Equation (9) implies
| h ( t , ϑ ) | | h ( t , 0 ) | | h ( t , ϑ ) h ( t , 0 ) | l 1 | ϑ | ,
| h ( t , ϑ ) | | h ( t , 0 ) | + l 1 | ϑ |
and
| h ( t , ϑ ) | | a 1 ( t ) | + l 1 | ϑ | ,
where
a 1 ( t ) = | h ( t , 0 ) | , a 1 B C ( R + ) a n d a 1 * = sup t R + | a 1 ( t ) | < .
Analogously, we can obtain
| g ( t , ϑ ) | | a 2 ( t ) | + l 2 | ϑ | ,
where
a 2 ( t ) = | g ( t , 0 ) | , a 2 B C ( R + ) a n d a 2 * = sup t R + | a 2 ( t ) | < .
Theorem 4. 
Suppose that Theorem 2 is verified. Let ( v i ) and ( v i i ) occur and ν B C ( R + ) is a solution of (3), and then (2) has a solution ϑ B C ( R + ) .
Proof. 
Assume that ν B C ( R + ) , the solution of (3), exists and the set B ρ in form
B ρ = { ϑ B C ( R + ) : ϑ ρ } , ρ = a 1 * + M a 2 * 1 ( l 1 + M l 2 ) .
Define A by
A ϑ ( t ) = h ( t , ϑ ( t ) ) + ν ( t ) g ( t , ϑ ( t ) ) , t 0 .
Let ϑ B C ( R + ) and M = sup t R + | ν ( t ) | = r , and then
| A ϑ ( t ) | = | h ( t , ϑ ( t ) ) + ν ( t ) g ( t , ϑ ( t ) ) | | a 1 ( t ) | + l 1 | ϑ ( t ) | + | ν ( t ) | ( | a 2 ( t ) | + l 2 | ϑ ( t ) | )
and
A ϑ a 1 * + l 1 ϑ + M ( a 2 * + l 2 ϑ ) a 1 * + l 1 ρ + M ( a 2 * + l 2 ρ ) = ρ .
Then, the operator A maps B ρ into itself.
Now, let ρ > 0 be given and take ϑ 1 , ϑ 2 B ρ , such that ϑ 2 ϑ 1 δ , and then, for every ν B C ( R + ) , we have
| A ϑ 2 ( t ) A ϑ 1 ( t ) | = | h ( t , ϑ 2 ( t ) ) + ν ( t ) g ( t , ϑ 2 ( t ) ) h ( t , ϑ 1 ( t ) ) ν ( t ) g ( t , ϑ 1 ( t ) ) | | h ( t , ϑ 2 ( t ) ) h ( t , ϑ 1 ( t ) ) | + | ν ( t ) | | g ( t , ϑ 2 ( t ) ) g ( t , ϑ 1 ( t ) ) | .
( i ) Choose T > 0 , where t T , and then
| A ϑ 2 ( t ) A ϑ 1 ( t ) | l 1 ϑ 2 ϑ 1 + M l 2 ϑ 2 ϑ 1 ( l 1 + M l 2 ) ϑ 2 ϑ 1 ( l 1 + M l 2 ) δ = ϵ .
( i i ) Also, for T > 0 , t [ 0 , T ] , from (10), we receive
| A ϑ 2 ( t ) A ϑ 1 ( t ) | l 1 ϑ 2 ϑ 1 + M l 2 ϑ 2 ϑ 1 ( l 1 + M l 2 ) δ = ϵ .
Then, the mapping A is continuous.
Now, take nonempty X B ρ . Then, for any ϑ 1 , ϑ 2 X and T > 0 , t T , (10) yields
| A ϑ 2 ( t ) A ϑ 1 ( t ) | l 1 | ϑ 2 ( t ) ϑ 1 ( t ) | + M l 2 | ϑ 2 ( t ) ϑ 1 ( t ) | l 1 s u p { | ϑ 2 ( t ) ϑ 1 ( t ) | , ϑ 1 , ϑ 2 X } + M l 2 s u p { | ϑ 2 ( t ) ϑ 1 ( t ) | , ϑ 1 , ϑ 2 X } l 1 d i a m X ( t ) + M l 2 d i a m X ( t ) ,
and then
d i a m A X ( t ) ( l 1 + M l 2 ) d i a m X ( t )
lim n s u p d i a m A X ( t ) ( l 1 + M l 2 ) lim n s u p d i a m X ( t ) .
Arbitrarily take ϑ X , t [ 0 , T ] , where | t 2 t 1 | < δ , t 1 t 2 , and define θ h ( δ ) , θ g ( δ ) as in [9,13].
Then, we have
| A ϑ ( t 2 ) A ϑ ( t 1 ) | = | h ( t 2 , ϑ ( t 2 ) ) + ν ( t 2 ) g ( t 2 , ϑ ( t 2 ) ) h ( t 1 , ϑ ( t 1 ) ) ν ( t 1 ) g ( t 1 , ϑ ( t 1 ) ) | θ h ( δ ) + l 1 | ϑ ( t 2 ) ϑ ( t 1 ) | + | ν ( t 2 ) ν ( t 1 ) | ( a 2 * + l 2 ρ ) + M θ g ( δ ) + M l 2 | ϑ ( t 2 ) ϑ ( t 1 ) | ,
and then
| A ϑ ( t 2 ) A ϑ ( t 1 ) | θ h ( δ ) + l 1 s u p { | ϑ ( t 2 ) ϑ ( t 1 ) | } + ( a 2 * + l 2 ρ ) ϵ + M θ g ( δ ) + M l 2 s u p { | ϑ ( t 2 ) ϑ ( t 1 ) | } .
Now, we deduce that
ω T ( A X , ϵ ) ( l 1 + M l 2 ) ω T ( X , ϵ ) + θ h ( δ ) + M θ g ( δ ) + ( a 2 * + l 2 ρ ) ϵ ω 0 T ( A X ) ( l 1 + M l 2 ) ω 0 T ( X )
and as T
ω 0 ( A X ) ( l 1 + M l 2 ) ω 0 ( X ) .
Now, from (11) and (12), we obtain
μ ( A X ) = ( l 1 + M l 2 ) μ ( X ) .
Since l 1 + M l 2 < 1 , A is a contraction operator regarding MNC; thus, Equation (2) has a solution ϑ B ρ . □
Consequently, we deduce the next result.
Corollary 1. 
For each solution ν B C ( R + ) of (3), consequently, the uniqueness of solution of (2) holds.
Proof. 
Take ν B C ( R + ) as a solution of (3) and ϑ 1 , ϑ 2 are two solutions of (2), and then
| ϑ 2 ( t ) ϑ 1 ( t ) | | h ( t , ϑ 2 ( t ) ) + ν ( t ) g ( t , ϑ 2 ( t ) ) h ( t , ϑ 1 ( t ) ) ν ( t ) g ( t , ϑ 1 ( t ) ) | | h ( t , ϑ 2 ( t ) ) h ( t , ϑ 1 ( t ) ) | + | ν ( t ) | | g ( t , ϑ 2 ( t ) ) g ( t , ϑ 1 ( t ) ) | ,
and then
ϑ 2 ϑ 1 l 1 ϑ 2 ϑ 1 + M l 2 ϑ 2 ϑ 1
and
ϑ 2 ϑ 1 ( 1 ( l 1 + M l 2 ) ) 0 .
Then, ϑ 2 = ϑ 1 and the solution of (2) are unique. □
Theorem 5. 
The solution ϑ B C ( R + ) of (2) is asymptotically stable; that is, for any ϵ > 0 , there exist T ( ϵ ) > 0 and ρ > 0 . Moreover, for ϑ , ϑ ¯ B ρ , there are any two solutions, and then | ϑ ( t ) ϑ ¯ ( t ) | ϵ for t T ( ϵ ) .
Proof. 
Take ϑ , ϑ ¯ B ρ , any two solutions of (2), and thus
| ϑ ( t ) ϑ ¯ ( t ) | = | h ( t , ϑ ( t ) ) + ν ( t ) g ( t , ϑ ( t ) ) h ( t , ϑ ¯ ( t ) ) ν ¯ ( t ) g ( t , ϑ ¯ ( t ) ) | | h ( t , ϑ ( t ) ) h ( t , ϑ ¯ ( t ) ) | + | ν ( t ) ν ¯ ( t ) | | g ( t , ϑ ( t ) ) | + | ν ¯ ( t ) | | g ( t , ϑ ( t ) ) g ( t , ϑ ¯ ( t ) ) | l 1 | ϑ ( t ) ϑ ¯ ( t ) | + | ν ( t ) ν ¯ ( t ) | ( a 2 * + l 2 ρ ) + M l 2 | ϑ ( t ) ϑ ¯ ( t ) | .
Theorem 3 implies that
| ν ( t ) ν ¯ ( t ) | ϵ * , t T ( ϵ * ) ,
and then
ϑ ϑ ¯ l 1 ϑ ϑ ¯ + ( a 2 * + l 2 ρ ) ϵ * + M l 2 ϑ ϑ ¯ .
Hence,
ϑ ϑ ¯ ( a 2 * + l 2 ρ ) ϵ * 1 ( l 1 + M l 2 ) = ϵ ;
that is,
| ϑ ( t ) ϑ ¯ ( t ) | ϑ ϑ ¯ ϵ .
Consequently, ϑ B C ( R + ) is asymptotically stable of Equation (2). □

Asymptotic Dependency

Now, replace the assumption ( i v ) by ( i v ) * as follows:
( i v ) *
f i : R + × R + × R R , i = 1 , 2 are Carathéodory functions and satisfy Lipschitz condition,
| f i ( t , ς , ν ) f i ( t , ς , ν 1 ) | ζ i ( t ) | ν ν 1 | , i = 1 , 2 , ( t , ς , ν ) , ( t , ς , ν 1 ) R + × R × R .
where
lim t 0 β j ( t ) ζ i ( t ) d t = 0 , sup t R + 0 β j ( t ) ζ i ( t ) d t = ζ i * , i = 1 , 2 , j = 2 , 4 .
Theorem 6. 
Suppose that Theorem 4 is verified and then the asymptotic dependency of the solution of (2) on the function g 1 occurred; that is,
ϵ > 0 , δ ( ϵ ) , w h e r e | g 1 ( t , ν ( β 1 ( t ) ) g 1 * ( t , ν ( β 1 ( t ) ) | < δ , t > T ( ϵ )
a n d t h e n ϑ ϑ * < ϵ ,
where ϑ * is a solution of
ϑ * ( t ) = h ( t , ϑ * ( t ) ) + ν * ( t ) g ( t , ϑ * ( t ) ) , t 0
and ν * is the solution of
ν * ( t ) =
f t , g 1 * ( t , ν * ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν * ( ς ) ) d ς , g 2 ( t , ν * ( β 3 ( t ) ) ) . 0 β 4 ( t ) f 2 ( t , ς , ν * ( ς ) ) d ς , t 0 .
Proof. 
Assume that ϑ * satisfies (2) blending with the function g 1 * , and then
| ϑ ( t ) ϑ * ( t ) | = | h ( t , ϑ ( t ) ) + ν ( t ) g ( t , ϑ ( t ) ) h ( t , ϑ * ( t ) ) ν * ( t ) g ( t , ϑ * ( t ) ) | | h ( t , ϑ ( t ) ) h ( t , ϑ * ( t ) ) | + | ν ( t ) ν * ( t ) | | g ( t , ϑ ( t ) ) | + | ν * ( t ) | | g ( t , ϑ ( t ) ) g ( t , ϑ * ( t ) ) | l 1 | ϑ ( t ) ϑ * ( t ) | + | ν ( t ) ν * ( t ) | | g ( t , ϑ ( t ) ) | + M l 2 | ϑ ( t ) ϑ * ( t ) | ,
and then
ϑ ϑ * l 1 ϑ ϑ * + ν ν * ( a 2 + l 2 ρ ) + M l 2 ϑ ϑ * ν ν * ( a 2 * + l 2 ρ ) 1 ( l 1 + M l 2 ) .
But,
| ν ( t ) ν * ( t ) | = | f t , g 1 ( t , ν ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ( ς ) ) d ς , g 2 ( t , ν ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν ( ς ) ) d ς f t , g 1 * ( t , ν * ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν * ( ς ) ) d ς , g 2 ( t , ν * ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν * ( ς ) ) d ς | b | g 1 ( t , ν ( β 1 ( t ) ) ) g 1 * ( t , ν ( β 1 ( t ) ) ) | + b b 1 | ν ( β 1 ( t ) ) ν * ( β 1 ( t ) ) | + b λ 0 β 2 ( t ) | f 1 ( t , ς , ν ( ς ) ) f 1 ( t , ς , ν * ( ς ) ) | d ς + b b 2 | ν ( β 3 ( t ) ) ν * ( β 3 ( t ) ) | · 0 β 4 ( t ) | f 2 ( t , ς , ν ( ς ) ) | d ς + b | g 2 ( t , ν * ( β 3 ( t ) ) ) | · 0 β 4 ( t ) | f 2 ( t , ς , ν ( ς ) ) f 2 ( t , ς , ν * ( ς ) ) | d ς ,
and then
ν ν * b δ + b b 1 ν ν * + b ζ 1 * λ ν ν * + b b 2 ν ν * ( k 2 + c 2 r ) + b ( m 2 * + b 2 r ) ( ζ 2 * ν ν * ) b δ 1 ( b b 1 + b ζ 1 * λ + b b 2 ( k 2 + c 2 r ) + b ζ 2 * ( m 2 * + b 2 r ) ) = ϵ 5 .
Then,
ϑ ϑ * ϵ 5 ( a 2 * + l 2 ρ ) 1 ( l 1 + M l 2 ) = ϵ .
By the same manner, we can prove the asymptotic dependency on the function g 2 . □
Example 1. 
An example of g 1 can be
g 1 ( r , u ) = γ r e r + b 2 u ,
and then
g 1 * ( r , u ) = γ * r e r + b 2 u ;
the function g 1 satisfies Lipschitz condition
| g 1 ( r , u ) g 1 ( r , v ) | b 2 | u v |
and
| g 1 ( r , u ) g 1 * ( r , u ) | | γ γ * | r e r | γ γ * | δ .
Theorem 7. 
Presume that Theorem 4 is established; therefore, the asymptotic dependency of the solution of (2) on β 2 yields
ϵ > 0 , δ ( ϵ ) , w h e r e | β 2 β 2 * | < δ , t > T ( ϵ )
, a n d t h e n ϑ ϑ * < ϵ
where ϑ * satisfies
ϑ * ( t ) = h ( t , ϑ * ( t ) ) + ν * ( t ) g ( t , ϑ * ( t ) ) , t 0
and ν * is the solution of
ν * ( t ) = f ( t , g 1 ( t , ν * ( β 1 ( t ) ) ) , λ 0 β 2 * ( t ) f 1 ( t , ς , ν * ( ς ) ) d ς , g 2 ( t , ν * ( β 3 ( t ) ) ) · 0 β 4 ( t ) f 2 ( t , ς , ν * ( ς ) ) d ς ) , t 0 .
Proof. 
Given δ > 0 , where | β 2 β 2 * | < δ . , take ϑ * as satisfying (2) regarding the function β 2 * , so
| ϑ ( t ) ϑ * ( t ) | = | h ( t , ϑ ( t ) ) + ν ( t ) g ( t , ϑ ( t ) ) h ( t , ϑ * ( t ) ) ν * ( t ) g ( t , ϑ * ( t ) ) | | h ( t , ϑ ( t ) ) h ( t , ϑ * ( t ) ) | + | ν ( t ) ν * ( t ) | | g ( t , ϑ ( t ) ) | + | ν * ( t ) | | g ( t , ϑ ( t ) ) g ( t , ϑ * ( t ) ) | l 1 | ϑ ( t ) ϑ * ( t ) | + | ν ( t ) ν * ( t ) | | g ( t , ϑ ( t ) ) | + M l 2 | ϑ ( t ) ϑ * ( t ) | ,
and then
ϑ ϑ * l 1 ϑ ϑ * + ν ν * ( a 2 * + l 2 ρ ) + M l 2 ϑ ϑ * ν ν * ( a 2 * + l 2 ρ ) 1 ( l 1 + M l 2 ) .
But,
| ν ( t ) ν * ( t ) | = | f t , g 1 ( t , ν ( β 1 ( t ) ) ) , λ 0 β 2 ( t ) f 1 ( t , ς , ν ( ς ) ) d ς , g 2 ( t , ν ( β 3 ( t ) ) ) . 0 β 4 ( t ) f 2 ( t , ς , ν ( ς ) ) d ς
f t , g 1 ( t , ν * ( β 1 ( t ) ) ) , λ 0 β 2 * ( t ) f 1 ( t , ς , ν * ( ς ) ) d ς , g 2 ( t , ν * ( β 3 ( t ) ) ) . 0 β 4 ( t ) f 2 ( t , ς , ν * ( ς ) ) d ς | b b 1 | ν ( β 1 ( t ) ) ν * ( β 1 ( t ) ) | + b λ β 2 * ( t ) β 2 ( t ) | f 1 ( t , ς , ν ( ς ) ) | d ς + b λ 0 β 2 * ( t ) | f 1 ( t , ς , ν ( ς ) f 1 ( t , ς , ν * ( ς ) ) | d ς + b b 2 | ν ( β 3 ( t ) ) ν * ( β 3 ( t ) ) | · 0 β 4 ( t ) | f 2 ( t , ς , ν ( ς ) ) | d ς + b ( m 2 * + b 2 r ) · 0 β 4 ( t ) | f 2 ( t , ς , ν ( ς ) f 2 ( t , ς , ν * ( ς ) ) | d ς ,
and then
ν ν * b b 1 ν ν * + b λ ( k 1 + c 1 r ) | β 2 β 2 * | + b λ ζ 1 * ν ν * + b b 2 ν ν * ( k 2 + c 2 r ) + b ( m 2 * + b 2 r ) ( ζ 2 * ν ν * ) b b 1 ν ν * + b λ ( k 1 + c 1 r ) δ + b λ ζ 1 * ν ν * + b b 2 ν ν * ( k 2 + c 2 r ) + b ( m 2 * + b 2 r ) ( ζ 2 * ν ν * ) b λ ( k 1 + c 1 r ) δ 1 ( b b 1 + b λ ζ 1 * + b b 2 ( k 2 + c 2 r ) + b ζ 2 * ( m 2 * + b 2 r ) = ϵ 6 .
Then,
ϑ ϑ * ϵ 6 ( a 2 * + l 2 ρ ) 1 ( l 1 + M l 2 ) = ϵ .
Analogously, the asymptotic dependency on the function β 4 can be proved. □
Example 2. 
An example of β 2 in the form
β 2 ( r ) = r γ r e r
and then
β 2 * ( r ) = r γ * r e r
It is clear that our assumption of β 2 satisfies Lipschitz condition and
| β 2 ( r ) β 2 * ( r ) | | γ γ * | r e r | γ γ * | δ .
Theorem 8. 
Let Theorem 4 be verified, and then the asymptotic dependency of the solution of (2) on the parameter λ occurred; that is,
ϵ > 0 , δ ( ϵ ) , w h e r e | λ λ * | < δ ϑ ϑ * < ϵ , t > T ( ϵ )
and where ϑ * is the solution of
ϑ * ( t ) = h ( t , ϑ * ( t ) ) + ν * ( t ) g ( t , ϑ * ( t ) ) , t 0
and ν * is the solution of
ν * ( t ) = f t , g 1 ( t , ν * ( β 1 ( t ) ) ) , λ * 0 β 2 ( t ) f 1 ( t , ς , ν * ( ς ) ) d ς , g 2 ( t , ν * ( β 3 ( t ) ) ) . 0 β 4 ( t ) f 2 ( t , ς , ν * ( ς ) ) d ς , t 0 .
Proof. 
Let δ > 0 be given such that | λ λ * | δ and take ϑ * as a solution of (2) regarding parameter λ * ; thus,
ϑ ϑ * ν ν * ( a 2 * + l 2 ρ ) 1 ( l 1 + M l 2 ) ,
and, as in Theorem 6, we obtain
ν ν * b δ ( k 1 + c 1 r ) 1 ( b b 1 + b λ * ζ 1 * + b b 2 ( k 2 + c 2 r ) + b ζ 2 * ( m 2 * + b 2 r ) ) = ϵ 7
and
ϑ ϑ * ϵ 7 ( a 2 * + l 2 ρ ) 1 ( l 1 + M l 2 ) = ϵ .

4. Comments and Remarks

The problem (1) contains several key problems that appear in classical analysis.
Here, we provide a few special problems.
  • If f ( r , ξ , u , w ) = f ( r , ξ , u ) taking g 2 = 0 , then we have
    ϑ ( r ) h ( r , ϑ ( r ) ) g ( r , ϑ ( r ) ) = f r , g 1 r , ϑ ( β 1 ( r ) ) h ( r , ϑ ( β 1 ( r ) ) ) g ( r , ϑ ( ϕ 1 ( r ) ) ) , λ 0 β 4 ( r ) f 2 r , ς , ϑ ( ς ) h ( ς , ϑ ( ς ) ) g ( ς , ϑ ( ς ) ) d ς , r 0 .
  • If f ( r , ξ , u , w ) = f ( r , ξ ) taking λ , g 1 ( r , ϑ ) = 0 , then we have
    ϑ ( r ) h ( r , ϑ ( r ) ) g ( r , ϑ ( r ) ) = f r , g 2 r , ϑ ( β 3 ( r ) ) h ( r , ϑ ( β 3 ( r ) ) ) g ( r , ϑ ( β 3 ( r ) ) ) · 0 β 4 ( r ) f 2 r , ς , ϑ ( ς ) h ( ς , ϑ ( ς ) ) g ( ς , ϑ ( ς ) ) d ς , r 0 .
  • For λ and g 2 ( r , ϑ ) = 0 , then we have
    ϑ ( r ) h ( r , ϑ ( r ) ) g ( r , ϑ ( r ) ) = f r , g 1 r , ϑ ( β 1 ( r ) ) h ( r , ϑ ( β 1 ( r ) ) ) g ( r , ϑ ( β 1 ( r ) ) ) , r 0 .
  • For g 1 ( r , ϑ ) = g 2 ( r , ϑ ) = 0 , then we have
    ϑ ( r ) h ( r , ϑ ( r ) ) g ( r , ϑ ( r ) ) = f r , λ 0 β 2 ( r ) f 1 r , ς , ϑ ( ς ) h ( ς , ϑ ( ς ) ) g ( ς , ϑ ( ς ) ) d ς , r 0 .
  • For f ( r , ξ , u , w ) = 1 , therefore
    ϑ ( r ) = h ( r , ϑ ( r ) ) + g ( r , ϑ ( r ) ) , r 0
Moreover, let h = 0 , and then we have
ϑ ( r ) = g ( r , ϑ ( r ) ) , r 0 .
Example 3. 
Taking into account the next problem
ϑ ( r ) [ e r s i n r 20 + ϑ ( r ) 2 ] e r 3 + ϑ ( r ) 2 = c o s r e 3 r + 1 3 ( e 2 r + 1 2 ( ϑ ( γ r ) [ e r s i n r 20 + ϑ ( γ r ) 2 ] e r 3 + ϑ ( γ r ) 2 ) + 1 4 0 α r e ( r + s ) ( 1 + 1 2 ( ϑ ( s ) [ e s s i n s 20 + ϑ ( s ) 2 ] e s 3 + ϑ ( s ) 2 ) ) d s + ( e r 5 + 1 2 ( ϑ ( ϖ r ) [ e r s i n r 20 + ϑ ( ϖ r ) 2 ] e r 3 + ϑ ( ϖ r ) 2 ) ) · 0 ψ r s i n s e ( r + s ) ( 1 + 1 2 ( ϑ ( s ) [ e s s i n s 20 + ϑ ( s ) 2 ] e s 3 + ϑ ( s ) 2 ) ) d s , r 0 .
Set
h ( r , ϑ ) = e r s i n r 20 + ϑ ( r ) 2 , g ( r , ϑ ) = e r 3 + ϑ ( r ) 2 , f ( r , u ( r ) , z ( r ) , w ( t ) ) = c o s r e 3 r + 1 3 ( u ( r ) , z ( r ) , w ( r ) ) ,
where
u ( r ) = e 2 r + 1 2 ( ϑ ( γ r ) [ e r s i n r 20 + ϑ ( γ r ) 2 ] e r 3 + ϑ ( γ r ) 2 , γ ( r ) < 1 , z ( r ) = 1 4 0 α r e ( r + s ) ( 1 + 1 2 ( ϑ ( s ) [ e s s i n s + ϑ ( s ) 2 ] e s + ϑ ( s ) 200 ) ) d s , α ( r ) < 1 , w ( t ) = ( e r 5 + 1 2 ( ϑ ( ϖ t ) [ e r s i n r 20 + ϑ ( ϖ r ) 2 ] e r 3 + ϑ ( ϖ ( r ) 2 ) ) · 0 ψ r s i n s e ( r + s ) ( 1 + 1 2 ( ϑ ( s ) [ e s s i n s 20 + ϑ ( s ) 2 ] e s 3 + ϑ ( s ) 2 ) ) d s , ϖ ( r ) , ψ ( r ) < 1 .
Putting
m * = 1 e 3 , m 1 * = 1 e 2 , m 2 * = 1 5 e , b = 1 3 b 1 = b 2 = 1 2 , k 1 = k 2 = 1 e , λ = 1 4 , c 1 = c 2 = 1 2 e ,
a 1 * = 1 20 , a 2 * = 1 3 , l 1 = 1 2 , l 2 = 1 2 , a n d M = 1 e .
We can find that
l 1 + M l 2 = 0.6839397206 < 1 a n d b b 1 + b b 2 ( k 2 + c 2 r ) = 0.9739931049 < 1 .

5. Conclusions

The solvability of various problems in some spaces of bounded continuous functions defined on the half-axis has been discussed by many scholars by applying MNC [24,25], for example, [3,26,27], and for global asymptotic stability (see [24]).
In this investigation, the asymptotic stability and dependency of the solutions for an implicit delays hybrid quadratic functional integral equation have been established on R + . Firstly, we proved the existence of the solutions ν B C ( R + ) of (3), and then we studied the asymptotic stability of the solutions ν B C ( R + ) of (3). Next, we investigated the existence and the stability of ϑ B C ( R + ) on R + , by applying MNC in B C ( R + ) , and then we studied some asymptotic dependency of ϑ B C ( R + ) on the parameter λ 0 , and on the functions g 1 , g 2 , β 2 and β 4 . Furthermore, we can discuss other asymptotic dependency results on the other parameters of (3).
Finally, we discussed the exceptional cases, and examples are provided to illustrate our results.

Author Contributions

Methodology, A.M.A.E.-S. and M.M.S.B.-A.; Validation, A.M.A.E.-S. and M.M.S.B.-A.; Formal analysis, A.M.A.E.-S. and E.M.A.H.; Investigation, M.M.S.B.-A.; Resources, E.M.A.H.; Writing—original draft, M.M.S.B.-A.; Writing—review & editing, M.M.S.B.-A. and E.M.A.H.; Supervision, A.M.A.E.-S. All authors have read and agreed to the published version of the manuscript.

Funding

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We thank the referee for their remarks and comments that helped to improve our manuscript.

Conflicts of Interest

The authors have no conflict of interests.

References

  1. El-Sayed, A.M.A.; Hashem, H.H.G. Monotonic solutions of functional integral and differential equations of fractional order. Electron. J. Qual. Theory Differ. Equations 2009, 7, 1–8. [Google Scholar] [CrossRef]
  2. Liu, B. Existence and uniqueness of solutions to first-order multipoint boundary value problems. Appl. Math. Lett. 2004, 17, 1307–1316. [Google Scholar] [CrossRef]
  3. Banaś, J.; Chlebowicz, A.; Wos, W. On measures of noncompactness in the space of functions defined on the half-axis with values in a Banach space. J. Math. Anal. Appl. 2020, 489, 124187. [Google Scholar] [CrossRef]
  4. Darbo, G. Punti in transformazationi a condominio non compatto. Rend. Sem. Math. Univ. Padova 1955, 4, 84–92. [Google Scholar]
  5. Banaś, J. On the superposition operator and integrable solutions of some functional equation. Nonlinear Anal. 1988, 12, 777–784. [Google Scholar] [CrossRef]
  6. Toledano, A.J.M.; Benavides, D.T.; Lopez Acedo, G. Measures of Noncompactness in Metric Fixed Point Theory; Brikhäuser: Basel, Switzerland, 1997. [Google Scholar]
  7. Banaś, J.; Rzepka, B. An application of a measure of noncompactness in the study of asymptotic stability. Appl. Math. Lett. 2003, 16, 1–6. [Google Scholar] [CrossRef]
  8. Banaś, J.; Rzepka, B. On existence and asymptotic stability of solutions of nonlinear integral equation. Math. Anal. Appl. 2003, 284, 165–173. [Google Scholar] [CrossRef]
  9. Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic solutions of a class of quadratic integral equations of Volterra type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef]
  10. Banaś, J.; Rocha Martin, J.; Sadarangani, K. On the solution of a quadratic integral equation of Hammerstein type. Math. Comput. Model. 2006, 43, 97–104. [Google Scholar] [CrossRef]
  11. Cichoń, M.; Metwali, M.A. On quadratic integral equations in Orlicz spaces. J. Math. Anal. Appl. 2012, 387, 419–432. [Google Scholar] [CrossRef]
  12. El-Sayed, A.M.A.; Hashem, H.H.G. Carathèodory type theorem for a nonlinear quadratic integral equation. Math. Sci. Res. J. 2008, 12, 71–95. [Google Scholar]
  13. El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. Analytical contribution to a cubic functional integral equation with feedback control on the real half axis. Mathematics 2023, 11, 1133. [Google Scholar] [CrossRef]
  14. Dhage, B.C. Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations. Diff. Equ. Appl. 2010, 2, 465–486. [Google Scholar] [CrossRef]
  15. El-Sayed, A.M.A.; Hashem, H.H.G.; Al-Issa, S.M. An implicit hybrid delay functional integral equation: Existence of integrable solutions and continuous dependence. Mathematics 2021, 9, 3234. [Google Scholar] [CrossRef]
  16. Zhao, K. Generalized UH-stability of a nonlinear fractional coupling (p1, p2)-Laplacian system concerned with nonsingular Atangana–Baleanu fractional calculus. J. Inequ. Appl. 2023, 2023, 96. [Google Scholar] [CrossRef]
  17. Huang, H.; Zhao, K.; Liu, X. On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Math. 2022, 7, 19221–19236. [Google Scholar] [CrossRef]
  18. Zhao, K. Solvability, approximation and stability of periodic boundary value problem for a nonlinear Hadamard fractional differential equation with p-Laplacian. Axioms 2023, 12, 733. [Google Scholar] [CrossRef]
  19. Zhao, K. Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations. AIMS Math. 2021, 8, 13351–13367. [Google Scholar] [CrossRef]
  20. Zhao, K. Stability of a nonlinear fractional Langevin system with nonsingular exponential kernel and delay control. Hindawi Discrete Dyn. Nat. Soc. 2022, 2022, 9169185. [Google Scholar] [CrossRef]
  21. Zhao, K. Stability of a nonlinear Langevin system of ML-Type fractional derivative affected by time-varying delays and differential feedback control. Fractal Fract. 2022, 6, 725. [Google Scholar] [CrossRef]
  22. Banaś, J.; Goebel, K. Measure of noncompactnees in Banach spaces. In Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980; Volume 60. [Google Scholar]
  23. Akhmerov, R.R.; Kamenskii, M.I.; Potapov, A.S.; Rodkina, A.E.; Sadovskii, B.N. Measure of Noncompactness and Condensing Operators; Operator Theory: Advances and Applications Series; Brikhäuser: Basel, Switzerland, 1992; Volume 55. [Google Scholar]
  24. Banaś, J.; Dhage, B.C. Global asymptotic stability of solutions of a functional integral equation. Nonlinear Anal. 2008, 69, 1945–1952. [Google Scholar] [CrossRef]
  25. Banaś, J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. (Eds.) Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Springer: Singapore; New Delhi, India, 2017. [Google Scholar]
  26. Banaś, J.; Chlebowicz, A. On solutions of an infinite system of nonlinear integral equations on the real half-axis. Banach J. Math. Anal. 2019, 13, 944–968. [Google Scholar] [CrossRef]
  27. Chlebowicz, A. Existence of solutions to infinite systems of nonlinear integral equations on the real half-axis. Electron. J. Differ. Equ. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

El-Sayed, A.M.A.; Ba-Ali, M.M.S.; Hamdallah, E.M.A. Asymptotic Stability and Dependency of a Class of Hybrid Functional Integral Equations. Mathematics 2023, 11, 3953. https://doi.org/10.3390/math11183953

AMA Style

El-Sayed AMA, Ba-Ali MMS, Hamdallah EMA. Asymptotic Stability and Dependency of a Class of Hybrid Functional Integral Equations. Mathematics. 2023; 11(18):3953. https://doi.org/10.3390/math11183953

Chicago/Turabian Style

El-Sayed, Ahmed M. A., Malak M. S. Ba-Ali, and Eman M. A. Hamdallah. 2023. "Asymptotic Stability and Dependency of a Class of Hybrid Functional Integral Equations" Mathematics 11, no. 18: 3953. https://doi.org/10.3390/math11183953

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop