On the Cryptanalysis of a Simplified AES Using a Hybrid Binary Grey Wolf Optimization
Abstract
:1. Introduction
- 1-
- This work introduces a hybrid technique that combines the GWO and the PSO (HPSOGWO) and converts it to a binary version for simplified AES cryptanalysis.
- 2-
- This technique improves the exploitation ability in the particle swarm optimization with the ability of exploration in the grey wolf optimizer to produce both variants’ strength.
- 3-
- HPSOGWO is used to describe the cryptanalysis challenge as a combinatorial problem to break the Simplified-AES cryptosystem using KPA.
- 4-
- The performance of the proposed BPSOGWO is compared to other attacks, where it exhibits faster performance with only one pair of plaintext–ciphertext pairs (i.e., it reduces the number of messages needed in an attack, and secret information, such as plaintext–ciphertext pairs, cannot be obtained easily).
- 5-
- It can improve the cryptanalysis for the fitness of the S-AES by 82.5% compared to PSO, 84.79% compared to GA, and 79.6% compared to ACO.
2. Related Work
3. Simplified Advanced Encryption Standard (S-AES)
3.1. Substitution
3.2. Shift Row
3.3. Mix Columns
3.4. Add Round Key
3.5. S-AES Key Expansion
Algorithm 1: S-AES Key Expansion Algorithm |
For |
If |
3.6. Decryption
4. Material and Methods
4.1. Basics of the Particle Swarm Optimization (PSO)
Algorithm 2: PSO procedures |
Define the size of the swarm N. |
Define , which is the greatest number of generations possible. |
Create a population of N particles as a starting point. |
Set particle positions and velocities at random. |
Determine the fitness of each particle. |
Find the most suitable particle, the |
t = 0 |
While () |
For |
Calculate the particle’s new position. |
Find |
End For |
Find |
End while |
Return |
4.2. Binary PSO (BPSO)
4.3. Basics of Grey Wolf Optimization (GWO)
- Searching (looking for the prey).
- Pursuing (following, chasing, and nearing the prey).
- Encircling and pestering the prey until it comes to a halt.
- Prey attack.
Algorithm 3: The main steps of GWO |
Creation the grey wolves’. |
Initialize the variables a, A, and C. |
Computing the search agent fitness values and agent ranking |
While () |
For |
We are updating the current search agent’s position by Equation (15). |
End For |
Updating of . |
Calculation of search agent fitness values and rating of the agents. |
Updating the position of |
End while |
End |
4.4. Binary GWO (BGWO)
5. The Proposed Hybrid PSO-GWO (PSOGWO)
5.1. The Motivation of the Proposed PSOGWO
5.2. The Proposed PSOGWO Based on the Binary Aspect (BPSOGWO) for Attacking S-AES
5.3. Fitness Function of the S-AES
6. Experimental Setup and Results
6.1. Parameters Configuration
6.2. Index Storage Space
6.3. Impact of Population Size on the S-AES Characteristics
6.4. The Fitness Function’s Suitability
6.5. Comparison of BPSOGWO with Other Methods
- It needs fewer ciphertext and plaintext pairs than other algorithms, as shown in Table 4.
- In comparison to the brute force attack, the space factor can be reduced.
- In comparison to using either PSO or GWO [45], this algorithm it reaches the correct key more efficiently and a smaller number of iterations.
Strategy | Attacked Rounds | Required Number of Plaintext-Ciphertext Pairs |
---|---|---|
Linear cryptanalysis Musa [21] | Round 1 | 109 |
Linear cryptanalysis Davood [22] | Round 1 Round 1 and Round 2 | 116 548 |
Linear cryptanalysis Bizaki [47] | Round 1 and Round 2 | 96 |
Using GA Vimalathithan [24] | Round 1and Round 2 | 3 |
Using ACO Grari, Azouaoui, Zine-Dine [46] | Round 1 and Round 2 | 2 |
The proposed BPSOGWO | Round 1 and Round 2 | 1 |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chinnasamy, P.; Albakri, A.; Khan, M.; Raja, A.A.; Kiran, A.; Babu, J.C. Smart Contract-Enabled Secure Sharing of Health Data for a Mobile Cloud-Based E-Health System. Appl. Sci. 2023, 13, 3970. [Google Scholar] [CrossRef]
- Stinson, D.R. Cryptography: Theory and Practice; Chapman and Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Manangi, S.J.; Chaurasia, P.; Singh, M.P. Simplified AES for Low Memory Embedded Processors. Glob. J. Comp. Comp. Sci. Technol. 2010, 10, 7–11. [Google Scholar]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Abualigah, L. Binary aquila optimizer for selecting effective features from medical data: A COVID-19 case study. Mathematics 2022, 10, 1929. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on the genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [Google Scholar] [CrossRef]
- Mirjalili, S.; Dong, J.S.; Lewis, A. Ant colony optimizer: Theory, literature review, and application in AUV path planning. Nature-Inspired Optim. Theor. Lit. Rev. Appl. 2020, 811, 7–21. [Google Scholar]
- Nadimi-Shahraki, M.H.; Moeini, E.; Taghian, S.; Mirjalili, S. Discrete Improved Grey Wolf Optimizer for Community Detection. J. Bionic Eng. 2023, 20, 2331–2358. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Hassanien, A.E. New binary bat algorithm for solving 0–1 knap-sack problem. Complex Intell. Syst. 2018, 4, 31–53. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; El-Sehiemy, R.A.; Deb, S.; Wang, G.G. A novel fruit fly framework for multi-objective shape design of tubular linear synchronous motor. J. Supercomput. 2017, 73, 1235–1256. [Google Scholar] [CrossRef]
- Yang, X.S. Swarm intelligence based algorithms: A critical analysis. Evol. Intell. 2014, 7, 17–28. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Legón-Pérez, C.M.; Menéndez-Verdecía, J.A.; Martínez-Díaz, I.; Sosa-Gómez, G.; Rojas, O.; Veloz-Remache, G.d.R. Probabilistic Evaluation of the Exploration–Exploitation Balance during the Search, Using the Swap Operator, for Nonlinear Bijective S-Boxes, Resistant to Power Attacks. Information 2021, 12, 509. [Google Scholar] [CrossRef]
- Shao, K.; Song, Y.; Wang, B. PGA: A New Hybrid PSO and GA Method for Task Scheduling with Deadline Constraints in Distributed Computing. Mathematics 2023, 11, 1548. [Google Scholar] [CrossRef]
- El Menbawy, N.; Ali, H.A.; Saraya, M.S.; Ali-Eldin, A.M.T.; Abdelsalam, M.M. Energy-efficient computation offloading using hybrid GA with PSO in the Internet of robotic things environment. J. Supercomput. 2023, 79, 1–40. [Google Scholar] [CrossRef]
- Vinothkumar, T.; Deepa, S.N.; Raj, F.V.A. Adaptive probabilistic neural network based on hybrid PSO--ALO for predicting wind speed in different regions. Neural Comput. Appl. 2023, 35, 19997–20011. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Chen, P.; Wang, Y. Hybrid Algorithm Based on Phasor Particle Swarm Optimization and Bacterial Foraging Optimization. In Proceedings of the International Conference on Swarm Intelligence, Shenzhen, China, 14–18 July 2023; pp. 136–147. [Google Scholar]
- Duan, Y.; Yu, X. A collaboration-based hybrid GWO-SCA optimizer for engineering optimization problems. Expert Syst. Appl. 2023, 213, 119017. [Google Scholar] [CrossRef]
- Pramanik, R.; Pramanik, P.; Sarkar, R. Breast cancer detection in thermograms using a hybrid of GA and GWO based deep feature selection method. Expert Syst. Appl. 2023, 219, 119643. [Google Scholar] [CrossRef]
- Musa, M.A.; Schaefer, E.F.; Wedig, S. A simplified aes algorithm and its linear and differential cryptanalyses. Cryptologia 2003, 27, 148–177. [Google Scholar] [CrossRef]
- Mansoori, S.D.; Bizaki, H.K. On the vulnerability of simplified AES algorithm against linear cryptanalysis. Int. J. Comp. Sci. Netw. Secur. 2007, 7, 257–263. [Google Scholar]
- Simmons, S. Algebraic cryptanalysis of simplified AES. Cryptologia 2009, 33, 305–314. [Google Scholar] [CrossRef]
- Vimalathithan, R. Cryptanalysis of Simplified-AES Encrypted Communication. Int. J. Comput. Sci. Inf. Secur. 2015, 13, 142–150. [Google Scholar]
- Vimalathithan, R.; Valarmathi, M.L. Cryptanalysis of Simplified-AES using Particle Swarm Optimisation. Def. Sci. J. 2012, 62, 117–121. [Google Scholar] [CrossRef]
- Saeed, R.; Bhery, A. Cryptanalysis of Simplified-AES Using Intelligent Agent. In Proceedings of the Hybrid Artificial Intelligent Systems: 10th International Conference, HAIS 2015, Bilbao, Spain, 22–24 June 2015. [Google Scholar]
- Ali, I.K. Cryptanalysis of simple substitution ciphers using bees algorithm. J. Baghdad Coll. Econ. Sci. Univ 2013, 36, 373–382. [Google Scholar]
- Mekhaznia, T.; Menai, M.E.B. Cryptanalysis of classical ciphers with ant algorithms. Int. J. Metaheuristics 2014, 3, 175–198. [Google Scholar] [CrossRef]
- Bhateja, A.K.; Bhateja, A.; Chaudhury, S.; Saxena, P.K. Cryptanalysis of vigenere cipher using cuckoo search. Appl. Soft Comput. 2015, 26, 315–324. [Google Scholar] [CrossRef]
- Jain, A.; Chaudhari, N.S. A new heuristic based on the cuckoo search for cryptanal-ysis of substitution ciphers. In Proceedings of the International Conference on Neural Information Processing, Istanbul, Turkey, 9–12 November 2015; pp. 206–215. [Google Scholar]
- Jain, A.; Chaudhari, N.S. A novel cuckoo search strategy for automated cryptanalysis: A case study on the reduced complex knapsack cryptosystem. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 942–961. [Google Scholar] [CrossRef]
- Sabonchi, A.K.S.; Akay, B. Cryptanalysis of polyalphabetic cipher using differential evolution algorithm. Teh. Vjesn. 2020, 27, 1101–1107. [Google Scholar]
- Kamal, R.; Bag, M.; Kule, M. On the cryptanalysis of S-DES using binary cuckoo search algorithm. In Computational Intelligence in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2020; pp. 23–32. [Google Scholar]
- Amic, S.; Soyjaudah, K.M.S.; Mohabeer, H.; Ramsawock, G. Cryptanalysis of DES-16 using binary firefly algorithm. In Proceedings of the 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), Balaclava, Mauritius, 3–6 August 2016; pp. 94–99. [Google Scholar]
- Amic, S.; Soyjaudah, K.M.; Ramsawock, G. Dolphin swarm algorithm for cryptanalysis. In Information Systems Design and Intelligent Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 149–163. [Google Scholar]
- Amic, S.; Soyjaudah, K.M.S.; Ramsawock, G. Binary cat swarm optimization for cryptanalysis. In Proceedings of the 2017 IEEE International Conference on Advanced Networks and Tel-ecommunications Systems (ANTS), Bhubaneswar, India, 17–20 December 2017; pp. 1–6. [Google Scholar]
- Polak, I.; Boryczka, M. Tabu search against permutation based stream ciphers. Int. J. Electron. Telecommun. 2018, 64, 137–145. [Google Scholar] [CrossRef]
- Polak, I.; Boryczka, M. Tabu Search in revealing the internal state of RC4+ cipher. Appl. Soft Comput. 2019, 77, 509–519. [Google Scholar] [CrossRef]
- Grari, H.; Lamzabi, S.; Azouaoui, A.; Zine-Dine, K. Cryptanalysis of Merkle-Hellman cipher using ant colony optimization. IAES Int. J. Artif. Intell. 2021, 10, 490. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; ELkomy, O.M. Knapsack Cipher-based metaheuristic optimization algorithms for cryptanalysis in blockchain-enabled internet of things systems. Ad. Hoc. Netw. 2022, 128, 102798. [Google Scholar] [CrossRef]
- Putranto, D.S.C.; Wardhani, R.W.; Larasati, H.T.; Ji, J.; Kim, H. Depth-optimization of Quantum Cryptanalysis on Binary Elliptic Curves. IEEE Access 2023, 11, 45083–45097. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; Abdulkader, H.; Elatif, S.S.; Elkilani, W.S.; Al Maghayreh, E.; Dhahri, H.; Mahmood, A. A Novel Binary Hybrid PSO-EO Algorithm for Cryptanalysis of Internal State of RC4 Cipher. Sensors 2022, 22, 3844. [Google Scholar] [CrossRef] [PubMed]
- Jawed, M.S.; Sajid, M. Cryptanalysis of Lightweight Block Ciphers using Metaheuristic Algorithms in Cloud of Things (CoT). In Proceedings of the 2022 International Conference on Data Analytics for Business and Industry (ICDABI), Sakhir, Bahrain, 25–26 October 2022; pp. 165–169. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Discrete binary version of the particle swarm algorithm. Proc. IEEE Int. Conf. Syst. Man Cybern. 1997, 5, 4104–4108. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Grari, H.; Azouaoui, A.; Zine-Dine, K. A cryptanalytic attack of simplified-AES using ant colony optimization. Int. J. Electr. Comput. Eng. 2019, 9, 4287–4295. [Google Scholar] [CrossRef]
- Bizaki, H.K.; Falahati, A. Second Round Mini-AES MC. In Proceedings of the 2006 2nd International Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006; pp. 958–962. [Google Scholar]
Parameter | Definition | Value |
---|---|---|
c1 | Coefficient of cognitive acceleration | 0.5 |
c2 | Coefficient of social acceleration | 0.5 |
c3 | Coefficient vector | 0.5 |
W | Inertia weight | |
N | Population size | 30 |
D | No. of variables | 16 |
Maximum iterations | 100 | |
R | The number of runs | 5 |
Statistics | BPSO | BWOA | BGWO | BPSOGWO |
---|---|---|---|---|
Best | 1 | 1 | 0.9375 | 1 |
Mean | 0.9187 | 0.93125 | 0.89375 | 0.9375 |
Median | 0.9375 | 0.9375 | 0.875 | 0.9375 |
Sdt | 0.0422 | 0.035478 | 0.03019 | 0.041667 |
Time | 10.397315 | 11.866 | 13.40509 | 9.769446 |
BPSOGWO | N = 10 | N = 20 | N = 30 | N = 40 | N = 50 | |
Fitness | 0.8750 | 0.9375 | 1 | 1 | 1 | |
Key found | DBAC | 95BC | A73B | A73B | A73B | |
No of keys Browsed | 1000 | 2000 | 3000 | 4000 | 5000 | |
No of bits correct | 6 | 9 | 16 | 16 | 16 | |
BGWO | N = 10 | N = 20 | N = 30 | N = 40 | N = 50 | |
Fitness | 0.8125 | 0.8750 | 0.8750 | 0.8750 | 0.9375 | |
Key found | 5CFF | FBCF | 7DF9 | EDAA | E7FD | |
No of keys Browsed | 1000 | 2000 | 3000 | 4000 | 5000 | |
No of bits correct | 6 | 7 | 8 | 10 | 11 | |
BPSO | N = 10 | N = 20 | N = 30 | N = 40 | N = 50 | |
Fitness | 0.8125 | 0.8750 | 0.9375 | 0.9375 | 1 | |
Key found | DC88 | DBAC | BBBE | B1F2 | A73B | |
No of keys Browsed | 1000 | 2000 | 3000 | 4000 | 5000 | |
No of bits correct | 5 | 6 | 10 | 9 | 16 | |
BWOA | N = 10 | N = 20 | N = 30 | N = 40 | N = 50 | |
Fitness | 0.8125 | 0.8750 | 0.8750 | 1 | 1 | |
Key found | 97B5 | E7FD | BBBE | A73B | A73B | |
No of keys Browsed | 1000 | 2000 | 3000 | 4000 | 5000 | |
No of bits correct | 10 | 11 | 10 | 16 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizk-Allah, R.M.; Abdulkader, H.; Elatif, S.S.A.; Oliva, D.; Sosa-Gómez, G.; Snášel, V. On the Cryptanalysis of a Simplified AES Using a Hybrid Binary Grey Wolf Optimization. Mathematics 2023, 11, 3982. https://doi.org/10.3390/math11183982
Rizk-Allah RM, Abdulkader H, Elatif SSA, Oliva D, Sosa-Gómez G, Snášel V. On the Cryptanalysis of a Simplified AES Using a Hybrid Binary Grey Wolf Optimization. Mathematics. 2023; 11(18):3982. https://doi.org/10.3390/math11183982
Chicago/Turabian StyleRizk-Allah, Rizk M., Hatem Abdulkader, Samah S. Abd Elatif, Diego Oliva, Guillermo Sosa-Gómez, and Václav Snášel. 2023. "On the Cryptanalysis of a Simplified AES Using a Hybrid Binary Grey Wolf Optimization" Mathematics 11, no. 18: 3982. https://doi.org/10.3390/math11183982