An Improved Graph Isomorphism Network for Accurate Prediction of Drug–Drug Interactions
Abstract
:1. Introduction
2. Methods
2.1. Notations and Problem Formulation
2.2. Details of DDIGIN
2.2.1. Drug Embedding Initialization
- Random walks: Given a drug node , we generate a sequence S through a random walk. By denoting as the kth drug node in the walk, we take as the starting point, and is generated with the following distribution:
- Search bias: Given a 2nd order random walk with p and q guiding the walk, we set to evaluate the transition probability between drug nodes, and its value is computed as:
2.2.2. Drug Representation Learning
2.2.3. DDI Prediction
3. Experiments
3.1. Datasets
- The DDInter dataset is a comprehensive and practical DDI database that currently contains 1833 approved drugs that have been reviewed and curated by a clinical pharmacist team, and approximately 0.23 million DDI pairs [44].
3.2. Baseline Algorithms
- LINE [19]: It is an NN-based approach for network representation learning that learns the final representation by designing two kinds of proximities and optimizing them simultaneously.
- SDNE [22]: It can be considered as an extension of LINE, as well as the pioneering method of applying deep learning in graph representation learning through the utilization of an autoencoder.
- GraphSAGE [33]: GraphSAGE is a versatile inductive framework that utilizes node feature information to generate node embeddings effectively, even for data that have not been seen during the training phase.
- GCN [31]: Based on a first-order approximation of spectral convolutions on graphs, it employs an effective layerwise propagation method.
- DeepDDS [50]: It learns drug embedding vectors using a graph attention network or GCN, adopts an MLP to extract the cell line features, and then concatenates them to predict the synergy of drug combinations.
- CPI-IGAE [51]: It uses the optimized inductive aggregator based on GraphSAGE for feature extraction, and then designs the scoring function based on the inner product to adumbrate the drug interaction probability.
3.3. Experimental Settings
3.4. Evaluation Metrics
3.5. Results
3.6. Ablation Study
- DDIGIN+R: It simply replaces Node2Vec with a random embedding initialization.
- DDIGIN-BN: It simply removes the normalization component.
- : This variant utilizes an alternative aggregation function, namely, , to aggregate the information in by following [33].
- : A modified aggregation function, i.e., , is employed in this variant to aggregates the information in by following [31].
- : The difference between and DDIGIN is that uses as its aggregation function, which is defined as by following [31].
3.7. Case Study
3.7.1. Predicting Novel DDIs
3.7.2. Distinguishing Similar Structures
3.8. Parameter Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDI | Drug–drug interaction |
GIN | Graph isomorphism network |
GNN | Graph neural networks |
GCN | Graph convolutional network |
KG | Knowledge graph |
References
- Giacomini, K.M.; Krauss, R.M.; Roden, D.M.; Eichelbaum, M.; Hayden, M.R.; Nakamura, Y. When good drugs go bad. Nature 2007, 446, 975–977. [Google Scholar] [CrossRef] [PubMed]
- Magro, L.; Moretti, U.; Leone, R. Epidemiology and characteristics of adverse drug reactions caused by drug–drug interactions. Expert Opin. Drug Saf. 2012, 11, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lazarou, J.; Pomeranz, B.H.; Corey, P.N. Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. JAMA 1998, 279, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Vilar, S.; Uriarte, E.; Santana, L.; Lorberbaum, T.; Hripcsak, G.; Friedman, C.; Tatonetti, N.P. Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat. Protoc. 2014, 9, 2147–2163. [Google Scholar] [CrossRef]
- Qato, D.M.; Wilder, J.; Schumm, L.P.; Gillet, V.; Alexander, G.C. Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs. 2011. JAMA Intern. Med. 2016, 176, 473–482. [Google Scholar] [CrossRef]
- Percha, B.; Altman, R.B. Informatics confronts drug–drug interactions. Trends Pharmacol. Sci. 2013, 34, 178–184. [Google Scholar] [CrossRef]
- Becker, M.L.; Kallewaard, M.; Caspers, P.W.; Visser, L.E.; Leufkens, H.G.; Stricker, B.H. Hospitalisations and emergency department visits due to drug–drug interactions: A literature review. Pharmacoepidemiol. Drug Saf. 2007, 16, 641–651. [Google Scholar] [CrossRef]
- Lin, X.; Quan, Z.; Wang, Z.J.; Huang, H.; Zeng, X. A novel molecular representation with BiGRU neural networks for learning atom. Briefings Bioinform. 2020, 21, 2099–2111. [Google Scholar] [CrossRef]
- Zhang, D.; Yin, J.; Zhu, X.; Zhang, C. Network representation learning: A survey. IEEE Trans. Big Data 2018, 6, 3–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Y.; Cui, Y.; Liu, S.; Zhang, W. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning. Methods 2020, 179, 37–46. [Google Scholar] [CrossRef]
- Zhao, B.W.; Wang, L.; Hu, P.W.; Wong, L.; Su, X.R.; Wang, B.Q.; You, Z.H.; Hu, L. Fusing higher and lower-order biological information for drug repositioning via graph representation learning. IEEE Trans. Emerg. Top. Comput. 2023. [Google Scholar] [CrossRef]
- Su, X.; You, Z.; Wang, L.; Hu, L.; Wong, L.; Ji, B.; Zhao, B. SANE: A sequence combined attentive network embedding model for COVID-19 drug repositioning. Appl. Soft Comput. 2021, 111, 107831. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef]
- Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015; pp. 891–900. [Google Scholar]
- Zhang, W.; Chen, Y.; Li, D.; Yue, X. Manifold regularized matrix factorization for drug-drug interaction prediction. J. Biomed. Inform. 2018, 88, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Zhang, S.; Huang, Z.; Zhou, H.; Zhou, Z. Sce: Scalable network embedding from sparsest cut. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 257–265. [Google Scholar]
- Purkayastha, S.; Mondal, I.; Sarkar, S.; Goyal, P.; Pillai, J.K. Drug-drug interactions prediction based on drug embedding and graph auto-encoder. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 547–552. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Dong, Y.; Chawla, N.V.; Swami, A. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 135–144. [Google Scholar]
- Liu, S.; Zhang, Y.; Cui, Y.; Qiu, Y.; Deng, Y.; Zhang, Z.M.; Zhang, W. Enhancing drug-drug interaction prediction using deep attention neural networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [Google Scholar]
- Hu, L.; Pan, X.; Yan, H.; Hu, P.; He, T. Exploiting higher-order patterns for community detection in attributed graphs. Integr. Comput. Aided Eng. 2021, 28, 207–218. [Google Scholar] [CrossRef]
- Hu, L.; Yang, Y.; Tang, Z.; He, Y.; Luo, X. FCAN-MOPSO: An Improved Fuzzy-based Graph Clustering Algorithm for Complex Networks with Multi-objective Particle Swarm Optimization. IEEE Trans. Fuzzy Syst. 2023. [Google Scholar] [CrossRef]
- Feng, Y.H.; Zhang, S.W. Prediction of drug-drug interaction using an attention-based graph neural network on drug molecular graphs. Molecules 2022, 27, 3004. [Google Scholar] [CrossRef]
- Bai, Y.; Gu, K.; Sun, Y.; Wang, W. Bi-level graph neural networks for drug-drug interaction prediction. arXiv 2020, arXiv:2006.14002. [Google Scholar]
- Chen, X.; Liu, X.; Wu, J. GCN-BMP: Investigating graph representation learning for DDI prediction task. Methods 2020, 179, 47–54. [Google Scholar] [CrossRef]
- Ma, M.; Lei, X. A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions. PLoS Comput. Biol. 2023, 19, e1010812. [Google Scholar] [CrossRef]
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [PubMed]
- Asada, M.; Miwa, M.; Sasaki, Y. Enhancing drug-drug interaction extraction from texts by molecular structure information. arXiv 2018, arXiv:1805.05593. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Zhou, H.; Zhou, W.; Wu, J. Graph Distance Neural Networks for Predicting Multiple Drug Interactions. arXiv 2022, arXiv:2208.14810. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30, 1025–1035. [Google Scholar]
- Su, X.; Hu, L.; You, Z.; Hu, P.; Zhao, B. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Briefings Bioinform. 2022, 23, bbac140. [Google Scholar] [CrossRef]
- Leman, A.; Weisfeiler, B. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Tech. Informatsiya 1968, 2, 12–16. [Google Scholar]
- Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep graph contrastive representation learning. arXiv 2020, arXiv:2006.04131. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Makarov, I.; Savchenko, A.; Korovko, A.; Sherstyuk, L.; Severin, N.; Mikheev, A.; Babaev, D. Temporal graph network embedding with causal anonymous walks representations. arXiv 2021, arXiv:2108.08754. [Google Scholar]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks Malaga-Torremolinos, Malaga-Torremolinos, Spain, 7–9 June 1995; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201. [Google Scholar]
- Daqi, G.; Yan, J. Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognit. 2005, 38, 1469–1482. [Google Scholar] [CrossRef]
- Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. AniAMPpred: Artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom. Briefings Bioinform. 2021, 22, bbab242. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open graph benchmark: Datasets for machine learning on graphs. Adv. Neural Inf. Process. Syst. 2020, 33, 22118–22133. [Google Scholar]
- Xiong, G.; Yang, Z.; Yi, J.; Wang, N.; Wang, L.; Zhu, H.; Wu, C.; Lu, A.; Chen, X.; Liu, S.; et al. DDInter: An online drug–drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res. 2022, 50, D1200–D1207. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Feng, Y.H.; Zhang, S.W.; Shi, J.Y. DPDDI: A deep predictor for drug-drug interactions. BMC Bioinform. 2020, 21, 1–15. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308. [Google Scholar]
- Zhao, T.; Hu, Y.; Valsdottir, L.R.; Zang, T.; Peng, J. Identifying drug–target interactions based on graph convolutional network and deep neural network. Briefings Bioinform. 2021, 22, 2141–2150. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Z.; Ji, S. Large-scale learnable graph convolutional networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1416–1424. [Google Scholar]
- Wang, J.; Liu, X.; Shen, S.; Deng, L.; Liu, H. DeepDDS: Deep graph neural network with attention mechanism to predict synergistic drug combinations. Briefings Bioinform. 2022, 23, bbab390. [Google Scholar] [CrossRef]
- Wan, X.; Wu, X.; Wang, D.; Tan, X.; Liu, X.; Fu, Z.; Jiang, H.; Zheng, M.; Li, X. An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph. Briefings Bioinform. 2022, 23, bbac073. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Hong, R.; He, Y.; Wu, L.; Ge, Y.; Wu, X. Deep attributed network embedding by preserving structure and attribute information. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 1434–1445. [Google Scholar] [CrossRef]
- Xie, Y.; Gong, M.; Wang, S.; Liu, W.; Yu, B. Sim2vec: Node similarity preserving network embedding. Inf. Sci. 2019, 495, 37–51. [Google Scholar] [CrossRef]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef]
- Yue, X.; Wang, Z.; Huang, J.; Parthasarathy, S.; Moosavinasab, S.; Huang, Y.; Lin, S.M.; Zhang, W.; Zhang, P.; Sun, H. Graph embedding on biomedical networks: Methods, applications and evaluations. Bioinformatics 2020, 36, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Quan, Z.; Wang, Z.J.; Ma, T.; Zeng, X. KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction. In Proceedings of the IJCAI, Yokohama, Japan, 11–17 July 2020; Volume 380, pp. 2739–2745. [Google Scholar]
- Hu, L.; Wang, X.; Huang, Y.A.; Hu, P.; You, Z.H. A novel network-based algorithm for predicting protein-protein interactions using gene ontology. Front. Microbiol. 2021, 12, 735329. [Google Scholar] [CrossRef]
- Hu, L.; Wang, X.; Huang, Y.A.; Hu, P.; You, Z.H. A survey on computational models for predicting protein-protein interactions. Briefings Bioinform. 2021, 22, bbab036. [Google Scholar] [CrossRef]
- Hu, L.; Chan, K.C. Discovering variable-length patterns in protein sequences for protein-protein interaction prediction. IEEE Trans. Nanobiosci. 2015, 14, 409–416. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, J.; Pan, X.; Luo, X.; Yuan, H. An effective link-based clustering algorithm for detecting overlapping protein complexes in protein-protein interaction networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 3275–3289. [Google Scholar] [CrossRef]
- Zhao, B.W.; Su, X.R.; Hu, P.W.; Huang, Y.A.; You, Z.H.; Hu, L. iGRLDTI: An Improved Graph Representation Learning Method for Predicting Drug-Target Interactions over Heterogeneous Biological Information Network. Bioinformatics 2023, 39, btad451. [Google Scholar] [CrossRef]
Dataset | # Nodes | # Edges | # Density |
---|---|---|---|
ogbl-ddi | 4267 | 1,334,889 | 0.1467% |
DDinter | 1833 | 222,384 | 0.1324% |
Datasets | Methods | Acc | F1 Score | AUC | AUPR | ||
---|---|---|---|---|---|---|---|
Precision | Recall | F1 Score | |||||
ogbl-ddi | LINE | 0.9038 | 0.9089 | 0.9033 | 0.9061 | 0.9052 | 0.9147 |
SDNE | 0.9107 | 0.9201 | 0.9176 | 0.9188 | 0.9113 | 0.9228 | |
GCN | 0.9632 | 0.9692 | 0.9693 | 0.9692 | 0.9642 | 0.9782 | |
GraphSAGE | 0.9715 | 0.9712 | 0.9619 | 0.9665 | 0.9717 | 0.9833 | |
DPDDI | 0.9717 | 0.9742 | 0.9640 | 0.9691 | 0.9721 | 0.9836 | |
GCN-DTI | 0.9737 | 0.9775 | 0.9649 | 0.9712 | 0.9744 | 0.9848 | |
DeepDDS | 0.9717 | 0.9749 | 0.9645 | 0.9697 | 0.9721 | 0.9831 | |
CPI-IGAE | 0.9722 | 0.9761 | 0.9651 | 0.9706 | 0.9731 | 0.9842 | |
GIN | 0.9742 | 0.9792 | 0.9654 | 0.9717 | 0.9762 | 0.9850 | |
DDIGIN | 0.9763 | 0.9866 | 0.9682 | 0.9773 | 0.9772 | 0.9868 | |
DDInter | LINE | 0.6604 | 0.7783 | 0.6229 | 0.6920 | 0.6742 | 0.8093 |
SDNE | 0.6631 | 0.7825 | 0.6377 | 0.7027 | 0.6809 | 0.7912 | |
GCN | 0.7740 | 0.7966 | 0.7993 | 0.7979 | 0.7934 | 0.9170 | |
GraphSAGE | 0.6602 | 0.6654 | 0.6534 | 0.6593 | 0.7191 | 0.8868 | |
DPDDI | 0.7903 | 0.8388 | 0.8233 | 0.8310 | 0.8118 | 0.9179 | |
GCN-DTI | 0.8071 | 0.8494 | 0.8242 | 0.8366 | 0.8189 | 0.9197 | |
DeepDDS | 0.8004 | 0.8425 | 0.8237 | 0.8330 | 0.8155 | 0.9193 | |
CPI-IGAE | 0.8066 | 0.8467 | 0.8240 | 0.8352 | 0.8158 | 0.9195 | |
GIN | 0.8121 | 0.8579 | 0.8255 | 0.8414 | 0.8217 | 0.9287 | |
DDIGIN | 0.8518 | 0.9372 | 0.8433 | 0.8878 | 0.8594 | 0.9402 |
Datasets | Methods | Acc | F1 Score | AUC | AUPR | ||
---|---|---|---|---|---|---|---|
Precision | Recall | F1 Score | |||||
ogbl-ddi | DDIGIN+R | 0.9679 | 0.9792 | 0.9643 | 0.9717 | 0.9673 | 0.9821 |
DDIGIN-BN | 0.9718 | 0.9820 | 0.9793 | 0.9806 | 0.9723 | 0.9836 | |
0.9635 | 0.9727 | 0.9648 | 0.9687 | 0.9637 | 0.9790 | ||
0.9692 | 0.9803 | 0.9652 | 0.9727 | 0.9700 | 0.9836 | ||
0.9718 | 0.9851 | 0.9673 | 0.9761 | 0.9724 | 0.9855 | ||
DDIGIN | 0.9763 | 0.9866 | 0.9682 | 0.9773 | 0.9772 | 0.9868 | |
DDInter | DDIGIN+R | 0.8169 | 0.9160 | 0.8104 | 0.8600 | 0.8199 | 0.9273 |
DDIGIN-BN | 0.8083 | 0.9168 | 0.8034 | 0.8564 | 0.8186 | 0.9272 | |
0.7669 | 0.9062 | 0.7624 | 0.8281 | 0.7909 | 0.9164 | ||
0.8263 | 0.9254 | 0.8234 | 0.8714 | 0.8306 | 0.9320 | ||
0.8495 | 0.9260 | 0.8471 | 0.8848 | 0.8518 | 0.9396 | ||
DDIGIN | 0.8518 | 0.9372 | 0.8433 | 0.8878 | 0.8594 | 0.9402 |
Number | Drug | Drug | Evidence |
---|---|---|---|
1 | Metformin | Tacrolimus | The therapeutic effectiveness of metformin may be diminished when metformin is used in conjunction with tacrolimus. |
2 | Prednisolone | Fexofenadine | N/A |
3 | Nystatin | Metronidazole | N/A |
4 | Epinephrine | Salbutamol | The combination of epinephrine and salbutamol can increase the risk or severity of adverse effects. |
5 | Cetirizine | Prednisolone | N/A |
6 | Leflunomide | Dexamethasone | When dexamethasone is combined with leflunomide, the risk or severity of adverse effects can be heightened. |
7 | Tamsulosin | Promethazine | The metabolism of tamsulosin can be decreased when combined with promethazine. |
8 | Zolpidem | Nystatin | N/A |
9 | Nystatin | Quetiapine | N/A |
10 | Valsartan | Nystatin | The excretion of valsartan can be decreased when combined with nystatin. |
11 | Triamcinolone | Fentanyl | The metabolism of fentanyl can be increased when combined with triamcinolone. |
12 | Nabumetone | Prednisolone | When prednisolone is combined with nabumetone, there is an increased risk or severity of gastrointestinal irritation. |
13 | Prednisolone | Insulin degludec | When prednisolone is combined with insulin degludec, there is an elevated risk or severity of hyperglycemia. |
14 | Folic acid | Furosemide | The combination of furosemide and folic acid may lead to an increased excretion rate of folic acid, potentially resulting in lower serum levels and a potential reduction in efficacy. |
15 | Lansoprazole | Prednisone | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Su, X.; Zhao, B.; Hu, P.; Bai, T.; Hu, L. An Improved Graph Isomorphism Network for Accurate Prediction of Drug–Drug Interactions. Mathematics 2023, 11, 3990. https://doi.org/10.3390/math11183990
Wang S, Su X, Zhao B, Hu P, Bai T, Hu L. An Improved Graph Isomorphism Network for Accurate Prediction of Drug–Drug Interactions. Mathematics. 2023; 11(18):3990. https://doi.org/10.3390/math11183990
Chicago/Turabian StyleWang, Sile, Xiaorui Su, Bowei Zhao, Pengwei Hu, Tao Bai, and Lun Hu. 2023. "An Improved Graph Isomorphism Network for Accurate Prediction of Drug–Drug Interactions" Mathematics 11, no. 18: 3990. https://doi.org/10.3390/math11183990
APA StyleWang, S., Su, X., Zhao, B., Hu, P., Bai, T., & Hu, L. (2023). An Improved Graph Isomorphism Network for Accurate Prediction of Drug–Drug Interactions. Mathematics, 11(18), 3990. https://doi.org/10.3390/math11183990