A Comparative Study of Fuzzy Domination and Fuzzy Coloring in an Optimal Approach
Abstract
:1. Introduction
2. Preliminaries
3. Operations on Fuzzy Graphs Using Edge Coloring
3.1. Residue Product of Two Fuzzy Graphs
- (i)
- ∀ (a, b) ∈ V1 × V2, (.
- (ii)
- ∀ (a, b) ∈ E1 and c w ∈ V2,.
3.1.1. Example
3.1.2. Find the Weight of the Minimal Spanning Tree Using Kruskal’s Algorithm
Edge | ax-by | ax-bz | bx-cy | cx-by | dx-cy | ay-bz | by-az | by-cz | cy-bz | cy-dz | dy-cz |
---|---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.28 | 0.42 | 0.33 | 0.28 | 0.33 | 0.16 | 0.16 | 0.16 | 0.16 | 0.2 | 0.2 |
3.1.3. Lower Domination Number of RF1.RF2
3.2. Symmetric Difference of Two Fuzzy Graphs
- .
- .
- .
- ,.
- ,.
3.2.1. Example
3.2.2. Lower Domination Number of SDF1 ⊕ SDF2
3.3. Max Product of Two Fuzzy Graphs
- (i)
- ∀ (a, b) ∈ × ,.
- (ii)
- ∀ a ∈ and (b, c) ∈,.
- (iii)
- ∀ a ∈ and (b, c) ∈,.
3.3.1. Example
3.3.2. Lower Domination Number of MF1 * MF2
3.4. Lexicographic Product of Two Fuzzy Graphs
- (i)
- , .
- (ii)
- , .
- (iii)
- .
3.4.1. Example
3.4.2. Lower Domination Number of LF1·LF2
4. Algorithm to Find an Optimal Network
4.1. Algorithm
Algorithm 1: Find an optimal network using the operations of a fuzzy network |
Input: ) respectively. Output: Optimal fuzzy network Begin Step 1: Construct a collection of finite networks, e.g., , by performing separate operations on a fuzzy network with vertex sets . Step 2: Calculate of all edges. Vertices are to be labeled as 1, 2, 3,…, n Step 3: using the operations applied to the constructed network. Steps 4: In the constructed network, e.g., N1, identify vertex ‘1′ of the maximum degree and color all its incident edges such that no two incident edges receive the same color. Step 5: Next, focus the direct neighbors of vertex 1, color the incident edges of the neighboring vertex, and label them as 12, 13, …, 1m, if there are m neighbors. If the number of neighbors is less than m, then use the minimum number of the same color used for vertex ‘1′. Step 6: Proceed with Step 5 again until all the edges receive the colors. From the above step, we get the minimum number of colors used to color the given network. Steps 4, 5, and 6 will continue for the other constructed networks to find the minimum number of colors used to color the edges of the networks. Step 7: Find the minimal edge coloring set with the minimum number of colors used to color the established network and the corresponding optimal weight of the colors. Step 8: and let it be , respectively. Step 9: , respectively. Step 10: Determine the minimal spanning tree of the constructed networks, e.g., of , respectively, and let its corresponding minimum weight of be Step 11: Let denote the sum of the lower domination number of established network Ni and the minimum weight of spanning tree Ni, that is, is the sum of the weight of the basic colors used in establised network Ni and the minimum weight of spanning tree Ni, that is |
Step 12: Optimal value of the established network using domination,, and optimal value of the established network using chromatic index, . Step-13: Effective optimal value of the established network,. End |
4.2. Flow Chart of the Algorithm
4.3. Applications of a Fuzzy Graph in a Social Network
4.4. Applications of Fuzzy Graph Coloring in a Communication Network
4.4.1. Fault-Tolerant Routing in On-Chip Networks
4.4.2. Acyclic Subnetworks
4.4.3. Fuzzy Graph Coloring
Vertex Coloring
Edge Weights
4.4.4. Optimization Objective
4.4.5. Fault Tolerance
4.4.6. Implementation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akram, M.; Waseem, N.; Dudek, W.A. Certain types of edge m-polar fuzzy graphs. Iran J. Fuzzy Syst. 2017, 14, 27–50. [Google Scholar]
- Mahapatra, T.; Ghorai, G.; Pal, M. Competition graphs under interval-valued m-polar fuzzy environment and its application. Comput. Appl. Math. 2022, 41, 285. [Google Scholar] [CrossRef]
- Mahapatra, T.; Pal, M. An investigation on m-polar fuzzy threshold graph and its application on resource power controlling system. J. Ambient Intell. Humaniz. Comput. 2022, 13, 501–514. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Buckley, J.J.; Eslami, E. An Introduction to Fuzzy Logic and Fuzzy Sets; Springer Science & Business Media: New York, NY, USA, 2002. [Google Scholar]
- Talebi, A.A.; Rashmanlou, H. Isomorphism on interval-valued fuzzy graphs. Ann. Fuzzy Math. Inform. 2013, 6, 47–58. [Google Scholar]
- Samanta, S.; Pal, M. Fuzzy planar graphs. IEEE Trans. Fuzzy Syst. 2015, 23, 1936–1942. [Google Scholar] [CrossRef]
- Akram, M.; Jun, Y.B.; Al-Shehrie, N.O.; Sarwar, S. N-structures applied to graphs. World Appl. Sci. J. 2013, 22, 1–8. [Google Scholar]
- Karunambigai, M.G.; Akram, M.; Sivasankar, S.; Palanive, K. Balanced intuitionistic fuzzy graphs. Appl. Math. Sci. 2013, 7, 2501–2514. [Google Scholar] [CrossRef]
- Rangasamy, P.; Akram, M.; Thilagavathi, S. Intuitionistic fuzzy shortest hyperpath in a network. Inf. Process. Lett. 2013, 113, 599–603. [Google Scholar] [CrossRef]
- Islam, S.R.; Maity, S.; Pal, M. Comment on wiener index of a fuzzy graph and application to illegal immigration networks. Fuzzy Sets Syst. 2020, 384, 148–151. [Google Scholar] [CrossRef]
- Kumaran, N.; Meenakshi, A.; Mahdal, M.; Prakash, J.U.; Guras, R. Application of Fuzzy Network Using Efficient Domination. Mathematics 2023, 11, 2258. [Google Scholar] [CrossRef]
- Meenakshi, A.; Mythreyi, O.; Bramila, M.; Kannan, A.; Senbagamalar, J. Application of neutrosophic optimal network using operations. J. Intell. Fuzzy Syst. 2023, 45, 421–433. [Google Scholar] [CrossRef]
- Yang, H.L.; Guo, Z.L.; She, Y.; Liao, X. On single valued neutrosophic relations. J. Intell. Fuzzy Syst. 2016, 30, 1045–1056. [Google Scholar] [CrossRef]
- Atanassov, K.T. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Broumi, S.; Smarandache, F. New Distance and Similarity Measures of Interval Neutrosophic Sets. In Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Islam, S.R.; Pal, M. Hyper-Wiener index for fuzzy graph and its application in share market. J. Intell. Fuzzy Syst. 2021, 41, 2073–2083. [Google Scholar] [CrossRef]
- Arif, N.E. Domination (set and Number) in Neutrosophic Soft over Graphs. Wasit J. Pure Sci. 2022, 1, 26–43. [Google Scholar]
- Rashmanlou, H.; Samanta, S.; Pal, M.; Borzooei, R.A. Intuitionistic fuzzy graphs with categorical properties. Fuzzy Inf. Eng. 2015, 7, 317–334. [Google Scholar] [CrossRef]
- Shannon, A.; Atanassov, K. On a generalization of intuitionistic fuzzy graphs. NIFS 2006, 12, 24–29. [Google Scholar]
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Elsevier: New York, NY, USA, 1982. [Google Scholar]
- Ore, O. Theory of Graphs; American Mathematical Society Colloquium Publications: Providence, RI, USA, 1962. [Google Scholar]
- Haynes, T.W.; Hedetniemi, S.; Slater, P. Fundamentals of in Domination in Graphs; Springer International Publishing: New York, NY, USA, 1998. [Google Scholar]
- Swaminathan, V.; Dharmalingam, K.M. Degree equitable domination on graphs. Kragujev. J. Math. 2011, 35, 191–197. [Google Scholar]
- Meenakshi, A. Equitable domination of complement of inflated graph. AIP Conf. Proc. 2019, 2112, 1–6. [Google Scholar]
- Meenakshi, A.; Babujee, J.B. Paired Equitable domination in graphs. Int. J. Pure Appl. Math. 2016, 109, 75–81. [Google Scholar]
- Meenakshi, A. Paired Equitable domination in inflated graph. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 9–16. [Google Scholar]
- Meenakshi, A.; Mythreyi, O. Applications of Neutrosophic social network using max product networks. J. Intell. Fuzzy Syst. 2023, 45, 407–420. [Google Scholar] [CrossRef]
- Mahapatra, R.; Samanta, S.; Pal, M. Applications of edge colouring of fuzzy graphs. Informatica 2020, 31, 313–330. [Google Scholar] [CrossRef]
- Bershtein, L.; Bozhenyuk, A.; Rozenberg, I. Optimum allocation of centers in transportation networks using fuzzy graph bases. In Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13), Milano, Italy, 11–13 September 2013; pp. 270–275. [Google Scholar]
- Mahapatra, T.; Ghorai, G.; Pal, M. Fuzzy fractional coloring of fuzzy graph with its application. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5771–5784. [Google Scholar] [CrossRef]
- Mahapatra, R.; Samanta, S.; Pal, M.; Lee, J.G.; Khan, S.K.; Naseem, U.; Bhadoria, R.S. Colouring of COVID-19 affected region based on fuzzy directed graphs. Comput. Mater. Contin. 2021, 68, 1219–1233. [Google Scholar] [CrossRef]
- Lewis, R. A Guide to Graph Colouring; Springer: London, UK, 2016. [Google Scholar]
- Malaguti, E.; Toth, P. A survey on vertex coloring problems. Int. Trans. Oper. Res. 2010, 17, 1–34. [Google Scholar] [CrossRef]
- Galinier, P.; Hamiez, J.P.; Hao, J.K.; Porumbel, D. Recent advances in graph vertex coloring. In Handbook of Optimization: From Classical to Modern Approach; Springer: Berlin, Germany, 2013; pp. 505–528. [Google Scholar]
- Lih, K.W. The equitable coloring of graphs. Handb. Comb. Optim. 1998, 1, 2015–2038. [Google Scholar]
- Leighton, F.T. A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 1979, 84, 489. [Google Scholar] [CrossRef]
- Furmanczyk, H.; Kubale, M. Equitable coloring of graphs. Contemp. Math. 2004, 352, 35–54. [Google Scholar]
- Samanta, S.; Pramanik, T.; Pal, M. Fuzzy colouring of fuzzy graphs. Afr. Mat. 2016, 27, 37–50. [Google Scholar] [CrossRef]
- Chang, G.J.; Chen, S.H.; Hsu, C.Y.; Hung, C.M.; Lai, H.L. Strong edge-coloring for jellyfish graphs. Discret. Math. 2015, 338, 2348–2355. [Google Scholar] [CrossRef]
- Kishore, A.; Sunitha, M.S. On Injective Coloring of Graphs and Chromaticity of Fuzzy Graphs; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2016. [Google Scholar]
- Rosyida, I.; Indrati, C.R.; Sugeng, K.A. A new approach for determining fuzzy chromatic number of fuzzy graph. J. Intell. Fuzzy Syst. 2015, 28, 2331–2341. [Google Scholar] [CrossRef]
- Romanov, A.Y.; Myachin, N.M.; Lezhnev, E.V.; Ivannikov, A.D.; El-Mesady, A. Ring-Split: Deadlock-Free Routing Algorithm for Circulant Networks-on-Chip. Micromachines 2023, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, R.; Yi, M.; Song, Y.; Wang, X.; Du, G.; Huang, Z. Hotspots Reduction for GALS NoC Using a Low-Latency Multistage Packet Reordering Approach. Micromachines 2023, 14, 444. [Google Scholar] [CrossRef]
Edge | ay-bz | by-az | by-cz | cy-bz | cy-dz | dy-cz | ax-by | cx-by | bx-cy | dx-cy | ax-bz |
---|---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.16 | 0.16 | 0.16 | 0.16 | 0.2 | 0.2 | 0.28 | 0.28 | 0.33 | 0.33 | 0.42 |
S. No | Established Network | ||
---|---|---|---|
1 | RF1·RF2 | 4.48 | 3.36 |
2 | SDF1 ⊕ SDF2 | 7.6 | 7.75 |
3 | MF1* MF2 | 14.99 | 12.32 |
4 | LF1·LF2 | 8.5 | 8.5 |
S. No | Vertices | Characteristic of Each Vertex |
---|---|---|
1 | a | Technical skills |
2 | b | Data-driven skills |
3 | c | Management skills |
4 | d | Marketing skills |
5 | x | Technology Company |
6 | y | Consulting firms |
7 | z | Retail and consumer goods company |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meenakshi, A.; Kannan, A.; Mahdal, M.; Karthik, K.; Guras, R. A Comparative Study of Fuzzy Domination and Fuzzy Coloring in an Optimal Approach. Mathematics 2023, 11, 4019. https://doi.org/10.3390/math11184019
Meenakshi A, Kannan A, Mahdal M, Karthik K, Guras R. A Comparative Study of Fuzzy Domination and Fuzzy Coloring in an Optimal Approach. Mathematics. 2023; 11(18):4019. https://doi.org/10.3390/math11184019
Chicago/Turabian StyleMeenakshi, Annamalai, Adhimoolam Kannan, Miroslav Mahdal, Krishnasamy Karthik, and Radek Guras. 2023. "A Comparative Study of Fuzzy Domination and Fuzzy Coloring in an Optimal Approach" Mathematics 11, no. 18: 4019. https://doi.org/10.3390/math11184019
APA StyleMeenakshi, A., Kannan, A., Mahdal, M., Karthik, K., & Guras, R. (2023). A Comparative Study of Fuzzy Domination and Fuzzy Coloring in an Optimal Approach. Mathematics, 11(18), 4019. https://doi.org/10.3390/math11184019