Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- The function is of class .
- Functions L and f are continuous in all its three arguments and of class with respect to x and, in particular, locally Lipschitz-continuous, that is, for every compact and for all there is such that and .
- There exists also , such that and .
- With respect to the control u, there exists such that
3.1. Needle-like Perturbation of the Optimal Control
3.2. Pontryagin’s Maximum Principle for Problem (1)
- the maximality condition
- the adjoint system
- the transversality condition
- (i)
- one writes the associated Hamiltonian (9);
- (ii)
- we use the maximality condition (6) to obtain an expression of the optimal controls in terms of the state and adjoint variables;
- (iii)
- we substitute the expressions obtained in step (ii) in the adjoint system (7);
- (iv)
- finally, we solve the system obtained in step (iii) together with the initial conditions and the transversality condition (8).
4. An Illustrative Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Interscience Publishers John Wiley & Sons, Inc.: New York, NY, USA; London, UK, 1962. [Google Scholar]
- Arutyunov, A.V.; Aseev, S.M. State constraints in optimal control. The degeneracy phenomenon. Syst. Control Lett. 1995, 26, 267–273. [Google Scholar] [CrossRef]
- Aseev, S.M.; Kryazhimskiy, A.V. The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim. 2004, 43, 1094–1119. [Google Scholar] [CrossRef]
- Moon, J. A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Math. 2023, 8, 22924–22943. [Google Scholar] [CrossRef]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom. Remote Control 2013, 74, 543–574. [Google Scholar] [CrossRef]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation. Autom. Remote Control 2013, 74, 725–749. [Google Scholar] [CrossRef]
- Agrawal, O.P. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 2004, 38, 323–337. [Google Scholar] [CrossRef]
- Jelicic, Z.D.; Petrovacki, N. Optimality conditions and a solution scheme for fractional optimal control problems. Struct. Multidiscip. Optim. 2009, 38, 571–581. [Google Scholar] [CrossRef]
- Kamocki, R. Pontryagin maximum principle for fractional ordinary optimal control problems. Math. Methods Appl. Sci. 2014, 37, 1668–1686. [Google Scholar] [CrossRef]
- Ali, H.M.; Pereira, F.L.; Gama, S.M.A. A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Math. Methods Appl. Sci. 2016, 39, 3640–3649. [Google Scholar] [CrossRef]
- Bergounioux, M.; Bourdin, L. Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints. ESAIM Control Optim. Calc. Var. 2019, 26, 35. [Google Scholar] [CrossRef]
- Kamocki, R. Existence of optimal control for multi-order fractional optimal control problems. Arch. Control Sci. 2022, 32, 279–303. [Google Scholar]
- Bardi, M.; Dolcetta, I.C. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations; Springer: New York, NY, USA, 1997. [Google Scholar]
- Czyronis, P.M. Dynamic programming problem for fractional discrete-time dynamic systems. Quadratic index of performance case. Circuits Syst. Signal Process. 2014, 7, 2131–2149. [Google Scholar] [CrossRef]
- Dzielinski, A.; Czyronis, P.M. Dynamic Programming for Fractional Discrete-Time Systems. IFAC Proc. Vol. 2014, 47, 2003–2009. [Google Scholar] [CrossRef]
- Razminia, A.; Asadizadehshiraz, M.; Torres, D.F.M. Fractional order version of the Hamilton-Jacobi-Bellman equation. ASME J. Comput. Nonlinear Dyn. 2018, 1, 14. [Google Scholar] [CrossRef]
- Gomoyunov, M.I. Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems. SIAM J. Control Optim. 2020, 58, 3185–3211. [Google Scholar] [CrossRef]
- Teodero, G.S.; Tenreiro Machado, J.A.; de Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef]
- Ndaïrou, F.; Torres, D.F.M. Optimal control problems involving combined fractional operators with general analytic kernels. Mathematics 2021, 9, 2355. [Google Scholar] [CrossRef]
- Kumar, S.; Upadhyay, A. Optimal control problem for fractional stochastic delayed systems with noninstantaneous impulses. IMA J. Math. Control Inform. 2021, 38, 855–880. [Google Scholar] [CrossRef]
- Bandaliyev, R.A.; Mamedov, I.G.; Abdullayeva, A.B.; Safarova, K.H. Optimal control problem for a degenerate fractional differential equation. Lobachevskii J. Math. 2021, 42, 1239–1247. [Google Scholar] [CrossRef]
- Ndaïrou, F.; Torres, D.F.M. Pontryagin maximum principle for distributed-order fractional systems. Mathematics 2021, 9, 1883. [Google Scholar] [CrossRef]
- Baleanu, D.; Tenreiro Machado, J.A.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Academic Press: London, UK, 2016. [Google Scholar]
- Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef]
- Nikol’skii, M.S. On the sufficiency of the Pontryagin maximum principle in some optimization problems. Moscow Univ. Comput. Math. Cybernet. 2005, 2005, 29–37. [Google Scholar]
- Baghani, H.; Nieto, J.J. Some new properties of the Mittag-Leffler functions and their applications to solvability and stability of a class of fractional Langevin differential equations. Qual. Theory Dyn. Syst. 2024, 23, 18. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, Y.; Li, B. Necessary optimality conditions of fractional-order discrete uncertain optimal control problems. Eur. J. Control 2023, 69, 100723. [Google Scholar] [CrossRef]
- El Ouissari, A.; El Moutaouakil, K. Genetic algorithm applied to fractional optimal control of a diabetic patient. Ufa Math. J. 2023, 15, 129–147. [Google Scholar]
- Garrappa, R. Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef]
- Ndaïrou, F.; Khalighi, K.; Lahti, L. Ebola epidemic model with dynamic population and memory. Chaos Solitons Fractals 2023, 170, 113361. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Munoz-Pacheco, J.M.; Bekiros, S.; Alotaibi, N.D. A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19. Chaos Solitons Fractals 2021, 143, 110632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndaïrou, F.; Torres, D.F.M. Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems. Mathematics 2023, 11, 4218. https://doi.org/10.3390/math11194218
Ndaïrou F, Torres DFM. Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems. Mathematics. 2023; 11(19):4218. https://doi.org/10.3390/math11194218
Chicago/Turabian StyleNdaïrou, Faïçal, and Delfim F. M. Torres. 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems" Mathematics 11, no. 19: 4218. https://doi.org/10.3390/math11194218
APA StyleNdaïrou, F., & Torres, D. F. M. (2023). Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems. Mathematics, 11(19), 4218. https://doi.org/10.3390/math11194218