New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Sensitivity Analysis of EC-PROMETHEE
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
ANP | Analytical Network Process |
BWM | Best-Worst Method |
CILOS | Criterion Impact Loss |
COPRAS | Complex Proportional Assessment |
CRITIC | Criteria Importance Through Intercriteria Correlation |
D-CRITIC | Distance Correlation-based CRITIC |
DEMATEL | Decision-Making Trial and Evaluation Laboratory |
DM | Decision-making |
EC-PROMETHEE | Entropy-Critic-PROMETHEE |
ELECTRE | ÉLimination et Choix Traduisant la REalité (French) |
FUCOM | Full Consistency Method |
GAIA | Geometrical Analysis for Interactive Aid |
IDOCRIW | Integrated Determination of Objective CRIteria Weights |
IFS | Intuitionistic fuzzy sets |
LBWA | Level Based Weight Assessment |
MCDA | Multi-Criteria Decision Analysis |
MCDM | Multi-Criteria Decision-Making |
MEREC | Method Based on the Removal Effects of Criteria |
PROMETHEE | Preference Ranking Organization Method for Enrichment of Evaluation |
SAPEVO-M | Simple Aggregation of Preferences Expressed by Ordinal Vectors—Multi-Decision Makers |
SWARA | Step-wise Weight Assessment Ratio Analysis |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
VIKOR | VlseKriterijumska Optimizacija I Kompromisno Resenje (Serbian) |
Appendix A
References
- Basílio, M.P.; Pereira, V.; Costa, H.G.; Santos, M.; Ghosh, A. A Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977–2022). Electronics 2022, 11, 1720. [Google Scholar] [CrossRef]
- Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information 2023, 14, 285. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Singh, M.; Pant, M. A review of selected weighing methods in MCDM with a case study. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 126–144. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (Swara) by applying new step-wise weight assessment ratio. J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Mardani, A.; Nilashi, M.; Zakuan, N.; Loganathan, N.; Soheilirad, S.; Saman, M.Z.M.; Ibrahim, O. A systematic review and meta-Analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Appl. Soft Comput. 2017, 57, 265–292. [Google Scholar] [CrossRef]
- Fernandes, P.G.; Quelhas, O.L.G.; Gomes, C.F.S.; Júnior, E.L.P.; Bella, R.L.F.; Junior, C.d.S.R.; Pereira, R.C.A.; Basilio, M.P.; dos Santos, M. Product Engineering Assessment of Subsea Intervention Equipment Using SWARA-MOORA-3NAG Method. Systems 2023, 11, 125. [Google Scholar] [CrossRef]
- Mukhametzyanov, I. Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC and SD. Decis. Making: Appl. Manag. Eng. 2021, 4, 76–105. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Podvezko, V. Integrated Determination of Objective Criteria Weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in Mcdm Models: Full Consistency Method (Fucom). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Khan, F.; Ali, Y.; Pamucar, D. A new fuzzy FUCOM-QFD approach for evaluating strategies to enhance the resilience of the healthcare sector to combat the COVID-19 pandemic. Kybernetes 2022, 51, 1429–1451. [Google Scholar] [CrossRef]
- Ižović, M.; Pamucar, D. New Model for Determining Criteria Weights: Level Based Weight Assessment (LBWA). Model. Decis. Mak. Appl. Manag. Eng. 2019, 2, 126–137. [Google Scholar]
- Tenório, F.M.; Moreira, M.L.; Costa, I.P.d.A.; Gomes, C.F.S.; dos Santos, M.; Silva, F.C.A.; da Silva, R.F.; Basilio, M.P. SADEMON: The Computational Web Platform to the SAPEVO-M Method. Procedia Comput. Sci. 2022, 214, 125–132. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Banik, B.; Alam, S.; Chakraborty, A. Comparative study between GRA and MEREC technique on an agricultural-based MCGDM problem in pentagonal neutrosophic environment. Int. J. Environ. Sci. Technol. 2023, 20, 1–16. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Shao, X.; Wen, L.; Zhi, J. A PSO-Fuzzy group decision-making support system in vehicle performance evaluation. Math. Comput. Model. 2010, 52, 1921–1931. [Google Scholar] [CrossRef]
- Jahan, A.; Edwards, K.L. A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Mater. Des. 2015, 65, 335–342. [Google Scholar] [CrossRef]
- Ouenniche, J.; Pérez-Gladish, B.; Bouslah, K. An out-of-sample framework for TOPSIS-based classifiers with application in bankruptcy prediction. Technol. Forecast. Soc. Chang. 2018, 131, 111–116. [Google Scholar] [CrossRef]
- Sharkasi, N.; Rezakhah, S. A modified CRITIC with a reference point based on fuzzy logic and hamming distance. Knowl.-Based Syst. 2022, 255, 109768. [Google Scholar] [CrossRef]
- Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M. A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [Google Scholar] [CrossRef]
- Clausius, R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der physic 1865. [CrossRef]
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Bulduk, S.; Ecer, F. Entropi-ARAS Yaklaşımıyla Kripto Para Yatırım Alternatiflerinin Değerlendirilmesi. Süleyman Demirel Üniversitesi Vizyoner Derg. 2023, 14, 314–333. [Google Scholar] [CrossRef]
- Chen, W.; Feng, D.; Chu, X. Study of Poverty Alleviation Effects for Chinese Fourteen Contiguous Destitute Areas Based on Entropy Method. Int. J. Econ. Finance 2015, 7, 89–98. [Google Scholar] [CrossRef]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Mater. Today Proc. 2021, 50, 709–715. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
- Liu, M.; Ren, H. A New Intuitionistic Fuzzy Entropy and Application in Multi-Attribute Decision Making. Information 2014, 5, 587–601. [Google Scholar] [CrossRef]
- Thakur, P.; Kizielewicz, B.; Gandotra, N.; Shekhovtsov, A.; Saini, N.; Saeid, A.B.; Sałabun, W. A New Entropy Measurement for the Analysis of Uncertain Data in MCDA Problems Using Intuitionistic Fuzzy Sets and COPRAS Method. Axioms 2021, 10, 335. [Google Scholar] [CrossRef]
- Sampathkumar, S.; Augustin, F.; Kaabar, M.K.; Yue, X.-G. An integrated intuitionistic dense fuzzy Entropy-COPRAS-WASPAS approach for manufacturing robot selection. Adv. Mech. Eng. 2023, 15, 16878132231160265. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B. Promethee V: Mcdm Problems With Segmentation Constraints. INFOR Inf. Syst. Oper. Res. 1992, 30, 85–96. [Google Scholar] [CrossRef]
- Brans, J.-P.; Mareschal, B. The PROMETHEE VI procedure: How to differentiate hard from soft multicriteria problems. J. Decis. Syst. 1995, 4, 213–223. [Google Scholar] [CrossRef]
- Macharis, C.; Brans, J.P.; Mareschal, B. The GDSS PROMETHEE procedure: A PROMETHEE-GAIA based procedure for group decision support. J. Decis. Syst. 1998, 7, 283–307. [Google Scholar]
- Mareschal, B.; Brans, J.-P. Geometrical representations for MCDA. Eur. J. Oper. Res. 1988, 34, 69–77. [Google Scholar] [CrossRef]
- Brans, J.-P.; Mareschal, B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Taheri, H.M.; Gharehgozlou, M.; Farahani, A. An asymmetric PROMETHEE II for cryptocurrency portfolio allocation based on return prediction. Appl. Soft Comput. 2022, 131, 109829. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, C.; Liu, Q.; Zhou, W.; Huang, J. A barrier evaluation framework for forest carbon sink project implementation in China using an integrated BWM-IT2F-PROMETHEE II method. Expert Syst. Appl. 2023, 230, 120612. [Google Scholar] [CrossRef]
- Ajin, M.; Moses, J.; Dharshini, M.P. Tribological and machining characteristics of AA7075 hybrid composites and optimizing utilizing modified PROMETHEE approach. Mater. Res. Express 2023, 10, 046509. [Google Scholar] [CrossRef]
- Basilio, M.P.; Pereira, V.; de Oliveira, M.W.C.; Neto, A.F.d.C. Ranking policing strategies as a function of criminal complaints: Application of the PROMETHEE II method in the Brazilian context. J. Model. Manag. 2021, 16, 1185–1207. [Google Scholar] [CrossRef]
- Basilio, M.P.; Pereira, V. Operational research applied in the field of public security: The ordering of policing strategies such as the ELECTRE IV. J. Model. Manag. 2020, 15, 1227–1276. [Google Scholar] [CrossRef]
- Basilio, M.P.; Brum, G.S.; Pereira, V. A model of policing strategy choice: The integration of the Latent Dirichlet Allocation (LDA) method with ELECTRE I. J. Model. Manag. 2020, 15, 849–891. [Google Scholar] [CrossRef]
- Basilio, M.P.; Pereira, V.; Brum, G. Identification of operational demand in law enforcement agencies: An application based on a probabilistic model of topics. Data Technol. Appl. 2019, 53, 333–372. [Google Scholar] [CrossRef]
- Basilio, M.P. O Modelo Multicritério de Ordenação de Estratégias de Policiamento: Uma Aplicação dos Métodos da Família Electre; Universidade Federal Fluminense: Niterói, Brazil, 2019. [Google Scholar]
- Basilio, M.P.; Pereira, V. Estudo sobre a premiação das áreas de segurança pública no Rio de Janeiro via método multicritério: Uma aplicação do método Electre III. Exacta 2019, 18, 130–164. [Google Scholar] [CrossRef]
- Basilio, M.P.; Pereira, V.; de Oliveira, M.W.C.M. Knowledge discovery in research on policing strategies: An overview of the past fifty years. J. Model. Manag. 2021, 17, 1372–1409. [Google Scholar] [CrossRef]
- Do, E.; do, P.M.; de Janeiro, R. Diretriz Geral de Operações [General Operational Guideline]; Polícia Militar Do Estado Do Rio De Janeiro: Rio De Janeiro, Brazil, 1982. [Google Scholar]
- Odu, G. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449. [Google Scholar] [CrossRef]
- Mahajan, A.; Binaz, V.; Singh, I.; Arora, N. Selection of Natural Fiber for Sustainable Composites Using Hybrid Multi Criteria Decision Making Techniques. Compos. Part C Open Access 2022, 7, 100224. [Google Scholar] [CrossRef]
- Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Salwa, H.N.; Sapuan, S.M.; Mastura, M.T.; Zuhri, M.Y.M. Application of Shannon’s entropy-analytic hierarchy process (AHP) for the selection of the most suitable starch as matrix in green biocomposites for takeout food packaging design. BioResources 2020, 15, 4065–4088. [Google Scholar] [CrossRef]
- Wu, H.-W.; Zhen, J.; Zhang, J. Urban rail transit operation safety evaluation based on an improved CRITIC method and cloud model. J. Rail Transp. Plan. Manag. 2020, 16, 100206. [Google Scholar] [CrossRef]
- Vafaei, N.; Ribeiro, R.A.; Matos, L.M.C. Data normalisation techniques in decision making: Case study with TOPSIS method. Int. J. Inf. Decis. Sci. 2018, 10, 19. [Google Scholar] [CrossRef]
- Chakraborty, S. A Simulation-Based Comparative Study of Normalization Procedures in Multiattribute Decision Making. In Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, 16–19 February 2007. [Google Scholar]
- Vincke, J.P.; Brans, P. A preference ranking organization method. The PROMETHEE method for MCDM. Manag. Sci. 1985, 31, 647–656. [Google Scholar]
- Makan, A.; Fadili, A. Sustainability assessment of large-scale composting technologies using PROMETHEE method. J. Clean. Prod. 2020, 261, 121244. [Google Scholar] [CrossRef]
- de Almeida, A.T.; Costa, A.P.C.S. Modelo de decisão multicritério para priorização de sistemas de informação com base no método PROMETHEE. Gestão Produção 2002, 9, 201–214. [Google Scholar] [CrossRef]
- Basilio, M.P.; de Freitas, J.G.; Kämpffe, M.G.F.; Rego, R.B. Investment portfolio formation via multicriteria decision aid: A Brazilian stock market study. J. Model. Manag. 2018, 13, 394–417. [Google Scholar] [CrossRef]
- Ghandi, M.; Roozbahani, A. Risk Management of Drinking Water Supply in Critical Conditions Using Fuzzy PROMETHEE V Technique. Water Resour. Manag. 2020, 34, 595–615. [Google Scholar] [CrossRef]
- Alencar, L.; Almeida, A. Supplier Selection Based on the PROMETHEE VI Multicriteria Method. In Lecture Notes in Computer Science, Proceedings of the Evolutionary Multi-Criterion Optimization: 6th International Conference, EMO 2011, Ouro Preto, Brazil, 5–8 April 2011; Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6576, pp. 608–618. [Google Scholar] [CrossRef]
- Anwar, M.; Rasul, M.G.; Ashwath, N. The efficacy of multiple-criteria design matrix for biodiesel feedstock selection. Energy Convers. Manag. 2019, 198, 111790. [Google Scholar] [CrossRef]
- Fontana, M.E.; Cavalcante, C.A.V. Use of Promethee method to determine the best alternative for warehouse storage location assignment. Int. J. Adv. Manuf. Technol. 2014, 70, 1615–1624. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
Criteria Caption | Code |
---|---|
Murder | C1 |
Robbery | C2 |
Vehicle theft | C3 |
Theft residence | C4 |
Street robbery | C5 |
Cargo theft | C6 |
Bank robbery | C7 |
Theft to a commercial establishment | C8 |
Theft | C9 |
Kidnapping | C10 |
Drug seizure | C11 |
Seizure of weapons | C12 |
Threat | C13 |
Use of narcotic | C14 |
Drug traffic | C15 |
Disruption to quietness | C16 |
Traffic accident | C17 |
Illegal weapon | C18 |
Domestic violence | C19 |
Bank alarm trip | C20 |
Types of Strategies | Random | Oriented |
---|---|---|
Foot patrol | Strategy_1 | Strategy_5 |
Radio patrol | Strategy_2 | Strategy_6 |
Motorcycle patrol | Strategy_3 | Strategy_7 |
Horse patrol | Strategy_4 | Strategy_8 |
Preventive action operation | Not applied | Strategy_9 |
Operation of repressive action (scouring) | Not applied | Strategy_10 |
Operation of repressive action (search and capture) | Not applied | Strategy_11 |
Operation of repressive action (to search) | Not applied | Strategy_12 |
Operation of repressive action (siege) | Not applied | Strategy_13 |
Transit operations | Not applied | Strategy_14 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strategy_1 | 1 | 1 | 2 | 2 | 5 | 1 | 2 | 5 | 5 | 1 | 2 | 2 | 1 | 3 | 3 | 2 | 1 | 2 | 1 | 1 |
Strategy_2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 1 | 1 |
Strategy_3 | 2 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 1 | 3 | 1 | 1 |
Strategy_4 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Strategy_5 | 1 | 3 | 3 | 3 | 5 | 1 | 4 | 5 | 5 | 1 | 3 | 3 | 2 | 4 | 3 | 3 | 1 | 3 | 1 | 1 |
Strategy_6 | 4 | 4 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 3 | 4 | 4 | 3 | 4 | 4 | 4 | 4 | 4 | 1 | 1 |
Strategy_7 | 3 | 4 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 1 | 1 |
Strategy_8 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 3 | 4 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 1 |
Strategy_9 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 1 | 3 | 3 | 1 | 4 | 3 | 3 | 3 | 3 | 1 | 1 |
Strategy_10 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 1 | 5 | 5 | 1 | 4 | 5 | 1 | 1 | 5 | 1 | 1 |
Strategy_11 | 3 | 2 | 4 | 3 | 3 | 4 | 3 | 3 | 1 | 1 | 5 | 5 | 1 | 4 | 5 | 1 | 1 | 5 | 1 | 1 |
Strategy_12 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 1 | 5 | 5 | 1 | 5 | 5 | 1 | 1 | 5 | 1 | 1 |
Strategy_13 | 3 | 3 | 5 | 3 | 3 | 5 | 4 | 4 | 3 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | 1 | 5 | 1 | 1 |
Strategy_14 | 1 | 2 | 5 | 1 | 3 | 5 | 3 | 3 | 1 | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 5 | 4 | 1 | 1 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strategy_1 | 1.94 | 2.58 | 2.35 | 2.53 | 3.93 | 1.70 | 2.99 | 3.50 | 3.31 | 1.74 | 2.44 | 2.44 | 2.24 | 3.14 | 2.58 | 2.60 | 1.72 | 2.48 | 1.68 | 1.86 |
Strategy_2 | 2.52 | 3.09 | 3.46 | 2.91 | 3.27 | 3.18 | 3.13 | 3.23 | 2.62 | 2.16 | 2.81 | 2.88 | 2.23 | 3.03 | 2.89 | 2.73 | 2.21 | 2.80 | 1.86 | 2.15 |
Strategy_3 | 2.47 | 2.98 | 3.48 | 2.84 | 3.49 | 2.94 | 3.04 | 3.28 | 2.78 | 2.14 | 2.79 | 2.88 | 2.23 | 3.01 | 2.81 | 2.62 | 2.34 | 2.77 | 1.78 | 2.12 |
Strategy_4 | 1.52 | 1.79 | 1.77 | 1.89 | 2.81 | 1.59 | 1.93 | 2.28 | 2.21 | 1.50 | 1.87 | 1.90 | 1.80 | 2.35 | 2.05 | 2.07 | 1.49 | 2.03 | 1.45 | 1.56 |
Strategy_5 | 2.39 | 3.01 | 2.81 | 3.27 | 4.39 | 2.31 | 3.70 | 4.10 | 3.72 | 2.09 | 3.05 | 3.03 | 2.51 | 3.56 | 3.16 | 3.02 | 2.13 | 3.00 | 1.93 | 2.31 |
Strategy_6 | 3.20 | 3.73 | 4.22 | 3.79 | 4.11 | 4.14 | 4.08 | 4.16 | 3.40 | 2.73 | 3.76 | 3.78 | 2.85 | 3.81 | 3.86 | 3.44 | 2.85 | 3.58 | 2.39 | 2.77 |
Strategy_7 | 3.03 | 3.67 | 4.21 | 3.73 | 4.30 | 3.81 | 4.01 | 4.20 | 3.54 | 2.67 | 3.62 | 3.59 | 2.75 | 3.77 | 3.63 | 3.33 | 2.95 | 3.51 | 2.25 | 2.65 |
Strategy_8 | 1.95 | 2.34 | 2.38 | 2.62 | 3.48 | 2.05 | 2.67 | 3.05 | 2.91 | 1.89 | 2.33 | 2.35 | 2.06 | 2.85 | 2.47 | 2.49 | 1.83 | 2.43 | 1.76 | 1.92 |
Strategy_9 | 2.84 | 3.34 | 3.90 | 3.37 | 3.88 | 3.82 | 3.69 | 3.80 | 3.30 | 2.63 | 3.09 | 3.16 | 2.50 | 3.44 | 3.36 | 3.05 | 2.88 | 3.16 | 2.24 | 2.38 |
Strategy_10 | 2.97 | 3.00 | 3.53 | 2.82 | 2.97 | 3.63 | 2.80 | 2.83 | 2.55 | 2.51 | 4.29 | 4.33 | 2.36 | 3.78 | 4.28 | 2.53 | 2.05 | 4.07 | 1.98 | 1.85 |
Strategy_11 | 3.20 | 3.15 | 3.62 | 2.88 | 3.02 | 3.52 | 2.88 | 2.94 | 2.59 | 2.62 | 4.27 | 4.31 | 2.46 | 3.74 | 4.26 | 2.38 | 1.98 | 4.06 | 1.95 | 1.84 |
Strategy_12 | 3.08 | 3.40 | 4.08 | 3.01 | 3.50 | 3.91 | 3.14 | 3.27 | 2.85 | 2.70 | 4.28 | 4.33 | 2.28 | 3.84 | 4.08 | 2.24 | 2.18 | 4.14 | 1.84 | 1.79 |
Strategy_13 | 2.86 | 3.05 | 4.01 | 2.99 | 3.05 | 3.84 | 3.15 | 3.06 | 2.53 | 2.79 | 3.65 | 3.70 | 2.14 | 3.16 | 3.57 | 2.10 | 2.16 | 3.57 | 1.81 | 1.82 |
Strategy_14 | 2.15 | 2.57 | 4.09 | 2.30 | 2.92 | 3.83 | 2.74 | 2.73 | 2.30 | 2.47 | 3.09 | 3.24 | 1.90 | 2.72 | 2.95 | 1.90 | 3.66 | 3.28 | 1.61 | 1.68 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strategy_1 | 2 | 3 | 2 | 2 | 4 | 1 | 3 | 4 | 3 | 1 | 2 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 1 | 1 |
Strategy_2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 2 | 2 |
Strategy_3 | 2 | 3 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 2 | 3 | 1 | 2 |
Strategy_4 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1.5 | 2 | 2 | 2 | 1 | 2 | 1 | 1 |
Strategy_5 | 2 | 3 | 3 | 3 | 5 | 2 | 4 | 4 | 4 | 2 | 3 | 3 | 2 | 4 | 3 | 3 | 2 | 3 | 2 | 2 |
Strategy_6 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 4 | 4 | 3 | 4 | 4 | 4 | 3 | 4 | 2 | 3 |
Strategy_7 | 3 | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | 3 |
Strategy_8 | 2 | 2 | 2 | 3 | 4 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 2 | 3 | 2 | 2 | 1.5 | 2 | 1 | 1 |
Strategy_9 | 3 | 3 | 4 | 3.5 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 3 | 3 | 2 | 2 |
Strategy_10 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 2.5 | 2 | 4 | 4.5 | 2 | 4 | 5 | 2 | 2 | 4 | 2 | 1 |
Strategy_11 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 3 | 2 | 4 | 4 | 2 | 4 | 4.5 | 2 | 2 | 4 | 2 | 1 |
Strategy_12 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 3 | 3 | 3 | 4 | 5 | 2 | 4 | 4 | 2 | 2 | 4 | 1 | 1 |
Strategy_13 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 2 | 3 | 4 | 4 | 2 | 3 | 4 | 2 | 2 | 4 | 1 | 1 |
Strategy_14 | 2 | 2 | 4 | 2 | 3 | 4 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 4 | 3 | 1 | 1 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strategy_1 | 556 | 739 | 672 | 723 | 1123 | 487 | 854 | 1001 | 947 | 499 | 698 | 697 | 641 | 898 | 738 | 743 | 493 | 710 | 480 | 533 |
Strategy_2 | 722 | 885 | 989 | 831 | 935 | 909 | 891 | 925 | 750 | 617 | 805 | 825 | 638 | 868 | 826 | 782 | 633 | 800 | 533 | 615 |
Strategy_3 | 705 | 852 | 996 | 813 | 998 | 841 | 866 | 937 | 796 | 612 | 799 | 824 | 638 | 862 | 804 | 749 | 669 | 792 | 510 | 606 |
Strategy_4 | 435 | 512 | 507 | 541 | 803 | 454 | 550 | 653 | 632 | 428 | 534 | 543 | 516 | 672 | 587 | 592 | 427 | 580 | 414 | 445 |
Strategy_5 | 683 | 862 | 804 | 936 | 1255 | 660 | 1054 | 1174 | 1064 | 598 | 871 | 868 | 717 | 1019 | 905 | 865 | 609 | 859 | 552 | 662 |
Strategy_6 | 915 | 1066 | 1207 | 1083 | 1175 | 1185 | 1162 | 1191 | 972 | 780 | 1076 | 1081 | 814 | 1091 | 1103 | 985 | 816 | 1023 | 683 | 791 |
Strategy_7 | 868 | 1051 | 1205 | 1066 | 1229 | 1091 | 1142 | 1202 | 1013 | 765 | 1034 | 1028 | 786 | 1078 | 1039 | 953 | 843 | 1005 | 644 | 758 |
Strategy_8 | 558 | 670 | 681 | 748 | 995 | 586 | 761 | 873 | 833 | 540 | 666 | 673 | 590 | 814 | 707 | 712 | 524 | 694 | 503 | 549 |
Strategy_9 | 813 | 954 | 1114 | 963 | 1110 | 1093 | 1053 | 1088 | 943 | 751 | 884 | 905 | 716 | 984 | 962 | 873 | 823 | 903 | 641 | 682 |
Strategy_10 | 849 | 858 | 1011 | 806 | 849 | 1037 | 799 | 808 | 730 | 718 | 1227 | 1238 | 675 | 1080 | 1224 | 723 | 586 | 1164 | 566 | 528 |
Strategy_11 | 916 | 900 | 1036 | 824 | 863 | 1007 | 820 | 841 | 741 | 748 | 1221 | 1233 | 703 | 1071 | 1219 | 681 | 565 | 1162 | 558 | 527 |
Strategy_12 | 880 | 971 | 1167 | 861 | 1001 | 1118 | 895 | 934 | 814 | 772 | 1223 | 1239 | 652 | 1097 | 1166 | 642 | 624 | 1184 | 527 | 511 |
Strategy_13 | 817 | 871 | 1147 | 855 | 873 | 1097 | 897 | 874 | 724 | 797 | 1044 | 1057 | 613 | 903 | 1020 | 601 | 618 | 1022 | 519 | 521 |
Strategy_14 | 614 | 735 | 1170 | 657 | 836 | 1095 | 780 | 780 | 659 | 706 | 884 | 927 | 542 | 779 | 844 | 544 | 1048 | 938 | 460 | 480 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strategy_1 | 0.724 | 0.674 | 1.404 | 1.355 | 3.427 | 0.756 | 1.340 | 3.341 | 3.173 | 0.748 | 1.392 | 1.458 | 0.702 | 2.033 | 2.032 | 1.322 | 0.769 | 1.428 | 0.761 | 0.732 |
Strategy_2 | 1.427 | 2.220 | 2.159 | 2.211 | 2.218 | 2.111 | 2.205 | 2.257 | 1.425 | 0.718 | 2.260 | 2.251 | 1.511 | 2.245 | 2.168 | 2.144 | 1.441 | 2.238 | 0.755 | 0.703 |
Strategy_3 | 1.405 | 2.184 | 2.075 | 2.162 | 2.860 | 2.111 | 2.180 | 2.218 | 2.054 | 0.713 | 2.222 | 2.222 | 1.494 | 2.227 | 2.109 | 2.102 | 0.685 | 2.167 | 0.761 | 0.692 |
Strategy_4 | 0.816 | 0.771 | 0.764 | 0.757 | 1.996 | 0.790 | 0.735 | 0.700 | 0.687 | 0.810 | 0.778 | 0.769 | 0.762 | 0.700 | 0.732 | 0.712 | 0.822 | 0.750 | 0.823 | 0.795 |
Strategy_5 | 0.685 | 2.182 | 2.103 | 2.129 | 3.903 | 0.678 | 2.834 | 3.842 | 3.509 | 0.704 | 2.161 | 2.176 | 1.388 | 2.914 | 2.085 | 2.073 | 0.716 | 2.210 | 0.731 | 0.667 |
Strategy_6 | 2.686 | 3.045 | 4.013 | 3.008 | 3.920 | 3.882 | 3.913 | 3.908 | 2.032 | 1.919 | 3.084 | 3.114 | 2.064 | 3.107 | 3.031 | 2.775 | 2.723 | 2.977 | 0.670 | 0.640 |
Strategy_7 | 1.969 | 2.898 | 3.929 | 2.915 | 3.958 | 3.566 | 3.110 | 3.889 | 3.382 | 1.928 | 3.035 | 3.017 | 2.044 | 3.005 | 2.831 | 2.058 | 2.704 | 2.954 | 0.686 | 0.634 |
Strategy_8 | 0.748 | 0.681 | 0.672 | 0.659 | 3.208 | 0.715 | 0.642 | 1.952 | 2.539 | 0.708 | 0.702 | 0.687 | 0.737 | 1.979 | 0.664 | 0.661 | 0.754 | 2.104 | 0.747 | 0.714 |
Strategy_9 | 2.030 | 2.799 | 3.175 | 2.826 | 3.108 | 2.994 | 2.916 | 3.026 | 2.010 | 0.637 | 2.100 | 2.097 | 0.677 | 2.800 | 2.099 | 2.046 | 2.010 | 2.107 | 0.665 | 0.638 |
Strategy_10 | 2.043 | 2.047 | 2.861 | 2.077 | 2.093 | 2.871 | 2.041 | 2.074 | 2.027 | 0.638 | 4.001 | 4.045 | 0.682 | 2.898 | 3.920 | 0.671 | 0.709 | 3.816 | 0.717 | 0.713 |
Strategy_11 | 1.921 | 1.299 | 2.855 | 2.062 | 2.040 | 2.757 | 1.998 | 2.031 | 0.658 | 0.629 | 4.010 | 4.032 | 0.660 | 2.812 | 3.911 | 0.690 | 0.729 | 3.784 | 0.730 | 0.705 |
Strategy_12 | 2.040 | 2.817 | 3.199 | 2.180 | 2.727 | 3.017 | 2.062 | 2.702 | 2.611 | 0.626 | 4.018 | 4.067 | 0.678 | 3.538 | 3.829 | 0.702 | 0.682 | 3.888 | 0.735 | 0.731 |
Strategy_13 | 2.026 | 2.065 | 3.800 | 2.094 | 2.033 | 3.542 | 2.681 | 2.690 | 2.031 | 0.606 | 2.880 | 2.931 | 0.696 | 2.639 | 2.754 | 0.730 | 0.676 | 3.416 | 0.745 | 0.726 |
Strategy_14 | 0.723 | 1.375 | 3.822 | 0.702 | 2.029 | 3.501 | 2.019 | 2.075 | 0.692 | 0.615 | 2.066 | 2.113 | 0.739 | 2.067 | 2.086 | 0.746 | 3.135 | 2.799 | 0.778 | 0.747 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strategy_1 | 1.408 | 1.741 | 1.649 | 1.713 | 2.692 | 1.287 | 2.001 | 2.339 | 2.102 | 1.305 | 1.699 | 1.776 | 1.574 | 2.128 | 1.748 | 1.718 | 1.325 | 1.773 | 1.277 | 1.364 |
Strategy_2 | 1.802 | 2.290 | 2.488 | 2.141 | 2.417 | 2.236 | 2.298 | 2.433 | 1.869 | 1.550 | 2.120 | 2.164 | 1.685 | 2.271 | 2.087 | 1.954 | 1.594 | 2.086 | 1.408 | 1.512 |
Strategy_3 | 1.732 | 2.169 | 2.409 | 2.048 | 2.495 | 2.069 | 2.209 | 2.422 | 1.906 | 1.526 | 2.069 | 2.134 | 1.666 | 2.237 | 1.976 | 1.835 | 1.601 | 2.000 | 1.357 | 1.467 |
Strategy_4 | 1.240 | 1.380 | 1.355 | 1.433 | 1.868 | 1.254 | 1.418 | 1.598 | 1.519 | 1.212 | 1.453 | 1.460 | 1.375 | 1.644 | 1.503 | 1.475 | 1.227 | 1.521 | 1.191 | 1.238 |
Strategy_5 | 1.637 | 2.192 | 1.971 | 2.322 | 3.426 | 1.565 | 2.620 | 3.154 | 2.611 | 1.472 | 2.194 | 2.202 | 1.740 | 2.595 | 2.199 | 2.090 | 1.524 | 2.213 | 1.410 | 1.544 |
Strategy_6 | 2.148 | 2.838 | 3.387 | 2.848 | 3.221 | 3.217 | 3.191 | 3.255 | 2.302 | 1.745 | 2.901 | 2.942 | 1.958 | 2.963 | 2.923 | 2.390 | 1.942 | 2.662 | 1.601 | 1.769 |
Strategy_7 | 1.992 | 2.662 | 3.310 | 2.717 | 3.401 | 2.721 | 3.116 | 3.269 | 2.396 | 1.719 | 2.743 | 2.711 | 1.873 | 2.831 | 2.571 | 2.286 | 1.993 | 2.595 | 1.545 | 1.679 |
Strategy_8 | 1.460 | 1.595 | 1.599 | 1.724 | 2.232 | 1.466 | 1.713 | 1.986 | 1.849 | 1.336 | 1.634 | 1.616 | 1.521 | 1.877 | 1.642 | 1.647 | 1.381 | 1.702 | 1.314 | 1.370 |
Strategy_9 | 1.924 | 2.334 | 3.091 | 2.379 | 3.016 | 2.860 | 2.693 | 2.878 | 2.209 | 1.672 | 2.164 | 2.212 | 1.694 | 2.408 | 2.353 | 2.082 | 1.928 | 2.217 | 1.491 | 1.521 |
Strategy_10 | 2.022 | 2.047 | 2.529 | 1.951 | 2.071 | 2.602 | 1.908 | 1.953 | 1.725 | 1.601 | 3.433 | 3.502 | 1.609 | 2.736 | 3.356 | 1.696 | 1.452 | 3.106 | 1.418 | 1.316 |
Strategy_11 | 2.051 | 2.044 | 2.585 | 1.980 | 2.052 | 2.427 | 1.916 | 1.991 | 1.704 | 1.646 | 3.424 | 3.476 | 1.621 | 2.633 | 3.334 | 1.642 | 1.440 | 3.075 | 1.424 | 1.300 |
Strategy_12 | 2.092 | 2.391 | 3.263 | 2.188 | 2.387 | 2.948 | 2.158 | 2.206 | 1.858 | 1.691 | 3.436 | 3.524 | 1.545 | 2.714 | 3.122 | 1.577 | 1.488 | 3.219 | 1.355 | 1.307 |
Strategy_13 | 1.929 | 2.097 | 3.048 | 2.087 | 2.068 | 2.717 | 2.110 | 2.055 | 1.714 | 1.690 | 2.629 | 2.708 | 1.492 | 2.083 | 2.455 | 1.533 | 1.460 | 2.442 | 1.353 | 1.322 |
Strategy_14 | 1.552 | 1.767 | 3.127 | 1.614 | 1.977 | 2.681 | 1.842 | 1.887 | 1.594 | 1.519 | 2.129 | 2.283 | 1.400 | 1.877 | 2.052 | 1.418 | 2.297 | 2.295 | 1.251 | 1.254 |
Alternatives\Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
Strategy_1 | 1.448 | 2.021 | 1.404 | 1.355 | 2.742 | 0.756 | 2.010 | 2.673 | 1.904 | 0.748 | 1.392 | 1.458 | 1.405 | 2.033 | 2.032 | 1.322 | 0.769 | 1.428 | 0.761 | 0.732 |
Strategy_2 | 1.427 | 2.220 | 2.159 | 2.211 | 2.218 | 2.111 | 2.205 | 2.257 | 2.138 | 1.437 | 2.260 | 2.251 | 1.511 | 2.245 | 2.168 | 2.144 | 1.441 | 2.238 | 1.511 | 1.406 |
Strategy_3 | 1.405 | 2.184 | 2.767 | 2.162 | 2.860 | 2.111 | 2.180 | 2.218 | 2.054 | 1.426 | 2.222 | 2.222 | 1.494 | 2.227 | 2.109 | 2.102 | 1.369 | 2.167 | 0.761 | 1.385 |
Strategy_4 | 0.816 | 0.771 | 0.764 | 1.515 | 1.996 | 0.790 | 1.470 | 1.400 | 1.375 | 0.810 | 1.556 | 1.538 | 1.143 | 1.399 | 1.464 | 1.425 | 0.822 | 1.500 | 0.823 | 0.795 |
Strategy_5 | 1.371 | 2.182 | 2.103 | 2.129 | 3.903 | 1.356 | 2.834 | 3.074 | 2.807 | 1.408 | 2.161 | 2.176 | 1.388 | 2.914 | 2.085 | 2.073 | 1.432 | 2.210 | 1.461 | 1.334 |
Strategy_6 | 2.014 | 3.045 | 3.210 | 3.008 | 3.136 | 3.106 | 3.130 | 3.126 | 2.032 | 1.919 | 3.084 | 3.114 | 2.064 | 3.107 | 3.031 | 2.775 | 2.042 | 2.977 | 1.341 | 1.919 |
Strategy_7 | 1.969 | 2.898 | 3.143 | 2.915 | 3.958 | 2.853 | 3.110 | 3.111 | 2.706 | 1.928 | 3.035 | 3.017 | 2.044 | 3.005 | 2.831 | 2.058 | 2.028 | 2.954 | 1.372 | 1.901 |
Strategy_8 | 1.497 | 1.362 | 1.343 | 1.977 | 2.567 | 1.431 | 1.925 | 1.952 | 1.904 | 0.708 | 1.403 | 1.374 | 1.475 | 1.979 | 1.328 | 1.323 | 1.131 | 1.402 | 0.747 | 0.714 |
Strategy_9 | 2.030 | 2.099 | 3.175 | 2.473 | 3.108 | 2.994 | 2.916 | 3.026 | 2.010 | 1.910 | 2.100 | 2.097 | 1.353 | 2.800 | 2.099 | 2.046 | 2.010 | 2.107 | 1.330 | 1.275 |
Strategy_10 | 2.043 | 2.047 | 2.861 | 2.077 | 2.093 | 2.871 | 2.041 | 2.074 | 1.689 | 1.276 | 3.201 | 3.641 | 1.363 | 2.898 | 3.920 | 1.342 | 1.418 | 3.053 | 1.433 | 0.713 |
Strategy_11 | 1.921 | 1.948 | 2.855 | 2.062 | 2.040 | 2.757 | 1.998 | 2.031 | 1.974 | 1.258 | 3.208 | 3.225 | 1.319 | 2.812 | 3.519 | 1.380 | 1.458 | 3.027 | 1.460 | 0.705 |
Strategy_12 | 2.040 | 2.817 | 3.199 | 2.180 | 2.727 | 3.017 | 2.062 | 2.026 | 1.958 | 1.879 | 3.214 | 4.067 | 1.356 | 2.831 | 3.063 | 1.405 | 1.364 | 3.111 | 0.735 | 0.731 |
Strategy_13 | 2.026 | 2.065 | 3.040 | 2.094 | 2.033 | 2.834 | 2.011 | 2.018 | 1.354 | 1.819 | 2.880 | 2.931 | 1.393 | 1.979 | 2.754 | 1.459 | 1.351 | 2.733 | 0.745 | 0.726 |
Strategy_14 | 1.445 | 1.375 | 3.058 | 1.405 | 2.029 | 2.801 | 2.019 | 2.075 | 1.384 | 1.231 | 2.066 | 2.113 | 1.477 | 2.067 | 2.086 | 1.491 | 2.508 | 2.099 | 0.778 | 0.747 |
Type | Generalized Criterion | Condition | Quantification of Preference | Parameter to Fix |
---|---|---|---|---|
Type I—Usual preference function | | - | ||
Type II—U-shape preference function | | q | ||
Type III—V-shape preference function | | p | ||
Type IV—Level preference function | | p, q | ||
Type V—Linear preference function | p, q | |||
Type VI—Gaussian preference function | | s |
Criterion | Code | Objective | Unit | Scale | Preference | Thresholds | Weight () |
---|---|---|---|---|---|---|---|
Murder | C1 | Max | Scalar | R | Usual | Absolute | 0.05 |
Robbery | C2 | Max | Scalar | R | Usual | Absolute | 0.05 |
Vehicle theft | C3 | Max | Scalar | R | Usual | Absolute | 0.05 |
Theft residence | C4 | Max | Scalar | R | Usual | Absolute | 0.05 |
Street robbery | C5 | Max | Scalar | R | Usual | Absolute | 0.05 |
Cargo theft | C6 | Max | Scalar | R | Usual | Absolute | 0.05 |
Bank robbery | C7 | Max | Scalar | R | Usual | Absolute | 0.05 |
Theft to a commercial establishment | C8 | Max | Scalar | R | Usual | Absolute | 0.05 |
Theft | C9 | Max | Scalar | R | Usual | Absolute | 0.05 |
Kidnapping | C10 | Max | Scalar | R | Usual | Absolute | 0.05 |
Drug seizure | C11 | Max | Scalar | R | Usual | Absolute | 0.05 |
Seizure of weapons | C12 | Max | Scalar | R | Usual | Absolute | 0.05 |
Threat | C13 | Max | Scalar | R | Usual | Absolute | 0.05 |
Use of narcotic | C14 | Max | Scalar | R | Usual | Absolute | 0.05 |
Drug traffic | C15 | Max | Scalar | R | Usual | Absolute | 0.05 |
Disruption to quietness | C16 | Max | Scalar | R | Usual | Absolute | 0.05 |
Traffic accident | C17 | Max | Scalar | R | Usual | Absolute | 0.05 |
Illegal weapon | C18 | Max | Scalar | R | Usual | Absolute | 0.05 |
Domestic violence | C19 | Max | Scalar | R | Usual | Absolute | 0.05 |
Bank alarm trip | C20 | Max | Scalar | R | Usual | Absolute | 0.05 |
Scenario | Method | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19 | C20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode | 0.045 | 0.049 | 0.050 | 0.051 | 0.062 | 0.040 | 0.052 | 0.057 | 0.045 | 0.044 | 0.050 | 0.050 | 0.046 | 0.059 | 0.052 | 0.039 | 0.022 | 0.055 | 0.067 | 0.067 | |
0.049 | 0.048 | 0.046 | 0.045 | 0.104 | 0.061 | 0.035 | 0.044 | 0.078 | 0.059 | 0.048 | 0.048 | 0.065 | 0.032 | 0.047 | 0.069 | 0.072 | 0.050 | 0.001 | 0.001 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | ||
Average | 0.050 | 0.050 | 0.049 | 0.051 | 0.051 | 0.047 | 0.050 | 0.051 | 0.051 | 0.050 | 0.049 | 0.049 | 0.052 | 0.051 | 0.050 | 0.051 | 0.048 | 0.050 | 0.051 | 0.051 | |
0.040 | 0.027 | 0.051 | 0.030 | 0.079 | 0.059 | 0.034 | 0.051 | 0.071 | 0.047 | 0.057 | 0.058 | 0.034 | 0.041 | 0.051 | 0.059 | 0.068 | 0.058 | 0.032 | 0.051 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | ||
Median | 0.051 | 0.049 | 0.048 | 0.053 | 0.054 | 0.044 | 0.054 | 0.054 | 0.053 | 0.046 | 0.051 | 0.050 | 0.054 | 0.054 | 0.051 | 0.052 | 0.046 | 0.051 | 0.047 | 0.040 | |
0.040 | 0.031 | 0.044 | 0.037 | 0.078 | 0.056 | 0.036 | 0.050 | 0.060 | 0.047 | 0.052 | 0.047 | 0.035 | 0.037 | 0.047 | 0.057 | 0.049 | 0.052 | 0.084 | 0.059 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | ||
Consensus_Mode | 0.048 | 0.048 | 0.048 | 0.050 | 0.061 | 0.040 | 0.051 | 0.055 | 0.046 | 0.047 | 0.048 | 0.048 | 0.046 | 0.059 | 0.049 | 0.039 | 0.028 | 0.055 | 0.067 | 0.067 | |
0.042 | 0.041 | 0.041 | 0.039 | 0.067 | 0.048 | 0.031 | 0.038 | 0.061 | 0.050 | 0.044 | 0.043 | 0.056 | 0.029 | 0.042 | 0.057 | 0.062 | 0.043 | 0.081 | 0.083 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | ||
Consensus_Average | 0.051 | 0.050 | 0.047 | 0.050 | 0.050 | 0.047 | 0.049 | 0.049 | 0.051 | 0.052 | 0.047 | 0.047 | 0.052 | 0.051 | 0.048 | 0.051 | 0.051 | 0.049 | 0.053 | 0.052 | |
0.041 | 0.027 | 0.054 | 0.030 | 0.067 | 0.055 | 0.036 | 0.052 | 0.062 | 0.040 | 0.068 | 0.069 | 0.037 | 0.036 | 0.063 | 0.051 | 0.070 | 0.062 | 0.029 | 0.051 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | ||
Consensus_Median | 0.052 | 0.049 | 0.047 | 0.052 | 0.052 | 0.044 | 0.053 | 0.052 | 0.053 | 0.048 | 0.050 | 0.048 | 0.054 | 0.053 | 0.049 | 0.051 | 0.049 | 0.051 | 0.049 | 0.044 | |
0.047 | 0.032 | 0.045 | 0.034 | 0.066 | 0.055 | 0.038 | 0.050 | 0.058 | 0.044 | 0.055 | 0.052 | 0.045 | 0.034 | 0.052 | 0.053 | 0.050 | 0.051 | 0.080 | 0.059 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | ||
Likert Scale | 0.050 | 0.050 | 0.049 | 0.051 | 0.051 | 0.047 | 0.050 | 0.051 | 0.051 | 0.050 | 0.049 | 0.049 | 0.052 | 0.051 | 0.050 | 0.051 | 0.048 | 0.050 | 0.051 | 0.051 | |
0.040 | 0.027 | 0.051 | 0.030 | 0.079 | 0.059 | 0.034 | 0.051 | 0.071 | 0.047 | 0.057 | 0.058 | 0.034 | 0.041 | 0.051 | 0.059 | 0.068 | 0.058 | 0.032 | 0.051 | ||
0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 |
Criteria | Scenario | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode | Average | Median | Consensus Mode | Consensus Average | Consensus Median | Likert Scale | ||||||||
C1 | 0.045 | 0.050 | 0.040 | 0.050 | 0.040 | 0.051 | 0.042 | 0.050 | 0.041 | 0.051 | 0.047 | 0.052 | 0.040 | 0.050 |
C2 | 0.048 | 0.050 | 0.027 | 0.050 | 0.031 | 0.050 | 0.041 | 0.050 | 0.027 | 0.050 | 0.032 | 0.050 | 0.027 | 0.050 |
C3 | 0.046 | 0.050 | 0.049 | 0.051 | 0.044 | 0.050 | 0.041 | 0.050 | 0.047 | 0.054 | 0.045 | 0.050 | 0.049 | 0.051 |
C4 | 0.045 | 0.051 | 0.030 | 0.051 | 0.037 | 0.053 | 0.039 | 0.050 | 0.030 | 0.050 | 0.034 | 0.052 | 0.030 | 0.051 |
C5 | 0.050 | 0.104 | 0.050 | 0.079 | 0.050 | 0.078 | 0.050 | 0.067 | 0.050 | 0.067 | 0.050 | 0.066 | 0.050 | 0.079 |
C6 | 0.040 | 0.061 | 0.047 | 0.059 | 0.044 | 0.056 | 0.040 | 0.050 | 0.047 | 0.055 | 0.044 | 0.055 | 0.047 | 0.059 |
C7 | 0.035 | 0.052 | 0.034 | 0.050 | 0.036 | 0.054 | 0.031 | 0.051 | 0.036 | 0.050 | 0.038 | 0.053 | 0.034 | 0.050 |
C8 | 0.044 | 0.057 | 0.050 | 0.051 | 0.050 | 0.054 | 0.038 | 0.055 | 0.049 | 0.052 | 0.050 | 0.052 | 0.050 | 0.051 |
C9 | 0.045 | 0.078 | 0.050 | 0.071 | 0.050 | 0.060 | 0.046 | 0.061 | 0.050 | 0.062 | 0.050 | 0.058 | 0.050 | 0.071 |
C10 | 0.044 | 0.059 | 0.047 | 0.050 | 0.046 | 0.050 | 0.047 | 0.050 | 0.040 | 0.052 | 0.044 | 0.050 | 0.047 | 0.050 |
C11 | 0.048 | 0.050 | 0.049 | 0.057 | 0.050 | 0.052 | 0.044 | 0.050 | 0.047 | 0.068 | 0.050 | 0.055 | 0.049 | 0.057 |
C12 | 0.048 | 0.050 | 0.049 | 0.058 | 0.047 | 0.050 | 0.043 | 0.050 | 0.047 | 0.069 | 0.048 | 0.052 | 0.049 | 0.058 |
C13 | 0.046 | 0.065 | 0.034 | 0.052 | 0.035 | 0.054 | 0.046 | 0.056 | 0.037 | 0.052 | 0.045 | 0.054 | 0.034 | 0.052 |
C14 | 0.032 | 0.059 | 0.041 | 0.051 | 0.037 | 0.054 | 0.029 | 0.059 | 0.036 | 0.051 | 0.034 | 0.053 | 0.041 | 0.051 |
C15 | 0.047 | 0.052 | 0.050 | 0.051 | 0.047 | 0.051 | 0.042 | 0.050 | 0.048 | 0.063 | 0.049 | 0.052 | 0.050 | 0.051 |
C16 | 0.039 | 0.069 | 0.050 | 0.059 | 0.050 | 0.057 | 0.039 | 0.057 | 0.050 | 0.051 | 0.050 | 0.053 | 0.050 | 0.059 |
C17 | 0.022 | 0.072 | 0.048 | 0.068 | 0.046 | 0.050 | 0.028 | 0.062 | 0.050 | 0.070 | 0.049 | 0.050 | 0.048 | 0.068 |
C18 | 0.050 | 0.055 | 0.050 | 0.058 | 0.050 | 0.052 | 0.043 | 0.055 | 0.049 | 0.062 | 0.050 | 0.051 | 0.050 | 0.058 |
C19 | 0.001 | 0.067 | 0.032 | 0.051 | 0.047 | 0.084 | 0.050 | 0.081 | 0.029 | 0.053 | 0.049 | 0.080 | 0.032 | 0.051 |
C20 | 0.001 | 0.067 | 0.050 | 0.051 | 0.040 | 0.059 | 0.050 | 0.083 | 0.050 | 0.052 | 0.044 | 0.059 | 0.050 | 0.051 |
Scenarios | Ranking | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | |
Consensus_Median | a6 | a7 | a12 | a9 | a2 | a10 | a5 | a3 | a11 | a13 | a14 | a1 | a8 | a4 |
Consensus_Average | a6 | a7 | a9 | a12 | a5 | a10 | a2 | a11 | a3 | a13 | a14 | a1 | a8 | a4 |
Consensus_Mode | a6 | a7 | a12 | a2 | a9 | a5 | a3 | a10 | a13 | a11 | a1 | a14 | a4 | a8 |
Likert_Scale | a6 | a7 | a12 | a9 | a5 | a11 | a13 | a10 | a2 | a3 | a14 | a1 | a8 | a4 |
Median | a7 | a6 | a9 | a12 | a5 | a11 | a10 | a13 | a3 | a2 | a14 | a1 | a8 | a4 |
Average | a6 | a7 | a12 | a9 | a5 | a11 | a13 | a10 | a2 | a3 | a14 | a1 | a8 | a4 |
Mode | a6 | a7 | a12 | a9 | a5 | a13 | a10 | a11 | a3 | a2 | a1 | a14 | a8 | a4 |
Model * | a6 | a7 | a12 | a9 | a11 | a5 | a10 | a13 | a2 | a3 | a14 | a1 | a8 | a4 |
Consensus_Median | Consensus_Average | Consensus_Mode | Likert Scale | Median | Average | Mode | |
---|---|---|---|---|---|---|---|
Consensus_Median | 1 | 0.973626374 | 0.969230769 | 0.8989011 | 0.894505 | 0.898901 | 0.89011 |
Consensus_Average | 1 | 0.92967033 | 0.94725275 | 0.956044 | 0.947253 | 0.934066 | |
Consensus_Mode | 1 | 0.86813187 | 0.846154 | 0.868132 | 0.872527 | ||
Likert Scale | 1 | 0.982418 | 1 | 0.978022 | |||
Median | 1 | 0.982418 | 0.969231 | ||||
Average | 1 | 0.978022 | |||||
Mode | 1 |
Scenarios/Alternatives | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Consensus_Median | 85% | 31% | 23% | 100% | 23% | 0% | 8% | 92% | 23% | 31% | 62% | 15% | 69% | 77% |
Consensus_Average | 85% | 31% | 31% | 100% | 31% | 0% | 8% | 92% | 46% | 31% | 54% | 46% | 69% | 77% |
Consensus_Mode | 77% | 69% | 31% | 77% | 62% | 0% | 8% | 85% | 38% | 69% | 69% | 15% | 62% | 85% |
Likert_Scale | 85% | 62% | 69% | 100% | 38% | 0% | 8% | 92% | 23% | 54% | 38% | 15% | 46% | 77% |
Median | 85% | 69% | 62% | 100% | 69% | 0% | 8% | 92% | 15% | 77% | 100% | 23% | 54% | 77% |
Average | 85% | 62% | 69% | 100% | 38% | 0% | 8% | 92% | 23% | 54% | 38% | 15% | 46% | 77% |
Mode | 31% | 69% | 62% | 100% | 46% | 8% | 15% | 92% | 23% | 46% | 54% | 15% | 85% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basilio, M.P.; Pereira, V.; Yigit, F. New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies. Mathematics 2023, 11, 4432. https://doi.org/10.3390/math11214432
Basilio MP, Pereira V, Yigit F. New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies. Mathematics. 2023; 11(21):4432. https://doi.org/10.3390/math11214432
Chicago/Turabian StyleBasilio, Marcio Pereira, Valdecy Pereira, and Fatih Yigit. 2023. "New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies" Mathematics 11, no. 21: 4432. https://doi.org/10.3390/math11214432
APA StyleBasilio, M. P., Pereira, V., & Yigit, F. (2023). New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies. Mathematics, 11(21), 4432. https://doi.org/10.3390/math11214432