Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations
Abstract
:1. Introduction
1.1. Inverse Spectral Problems—Inverse Scattering Problems and Method
1.2. Inverse Problems for Hyperbolic Equations
2. One-Dimensional Problems
2.1. I.M. Gelfand–B.M. Levitan Equation
2.2. V.A. Marchenko Equation—The Inverse Scattering Method
2.3. Krein Equation
2.4. Boundary-Control Method in One-Dimensional Case
2.5. One-Dimensional Inverse Seismic Problem
3. Two-Dimensional Analogs of the Approach
3.1. A Two-Dimensional Analog of Gelfand–Levitan Equation
3.2. A Two-Dimensional Analog of Krein Equation
4. Numerical Methods for Solving Gelfand–Levitan and Krein Equations
5. Numerical Calculations
6. Reconstruction of the Velocity and the Density
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ambarzumijan, V.A. Uber eine Frage der Eigenwerttheorie. Z. Phys. 1929, 53, 690–695. [Google Scholar] [CrossRef]
- Borg, G. Eine Umkehrung der Sturm Liouvilleschen Eigenwertanfgabe. Bestimmung der Differentialgleichung durch die Eigenwarte. Acta Math. 1946, 78, 1–96. [Google Scholar] [CrossRef]
- Levinson, N. The inverse Sturm–Lionville problem. Math. Tidsskr. B 1949, 36, 25–30. [Google Scholar]
- Levinson, N. On the uniqueness of the potential in a Schrodinger equation for a given asymptotic phase. Danske Vid. Selsk. Mat. Fys. Medd. 1949, 25, 9. [Google Scholar]
- Gelfand, I.M.; Levitan, B.M. On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSSR 1951, 15, 309–336. [Google Scholar]
- Krein, M.G. On a method of effective solution of an inverse boundary value problem. Dokl. Akad. Nauk SSSR. 1954, 94, 6. [Google Scholar]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for Solving the Korteweg–de Vries Equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Heisenberg, W. Die beobachtbaren Grossen in der Theorie der Elementarteilchen—I. Z. Phys. 1943, 120, 513–538. [Google Scholar] [CrossRef]
- Heisenberg, W. Die beobachtbaren Grossen in der Theorie der Elementarteilchen—II. Z. Phys. 1943, 120, 673–702. [Google Scholar] [CrossRef]
- Bargmann, V. On the connection between phase shifts and scattering potential. Revue Mod. Phys. 1949, 21, 488–493. [Google Scholar] [CrossRef]
- Bargmann, V. Remarks on the determination of a central field of force from the elastic scattering phase shifts. Phys. Rev. 1949, 75, 301–302. [Google Scholar] [CrossRef]
- Tikhonov, A.N. On the uniqueness of the solution to the problem of electrical prospecting. Dokl. Akad. Nauk SSSR 1949, 69, 6. [Google Scholar]
- Marchenko, V.A. Some questions in the theory of differential operator of the second order. Dokl. Akad. Nauk SSSR 1950, 72, 3. [Google Scholar]
- Levinson, N. Certain relations between phase shifts and scattering potential. Phys. Rev. 1953, 89, 755. [Google Scholar] [CrossRef]
- Marchenko, V.A. Some Questions in the Theory of One-Dimensional Linear Differential Operators of the Second Order—I; Moscow Mathematical Society: Moscow, Russia, 1952; Volume I. [Google Scholar]
- Krein, M.G. Solution of the inverse Sturm–Liouville problem. Dokl. Akad. Nauk SSSR 1951, 76, 1. [Google Scholar]
- Krein, M.G. Determination of the density of an inhomogeneous symmetric string from its frequency spectrum. Dokl. Akad. Nauk SSSR 1951, 76, 3. [Google Scholar]
- Krein, M.G. On inverse problems for an inhomogeneous string. Dokl. Akad. Nauk SSSR 1952, 82, 5. [Google Scholar]
- Krein, M.G. On the transition function of the one-dimensional boundary value problem of the second order. Dokl. Akad. Nauk SSSR 1953, 88, 3. [Google Scholar]
- Krein, M.G. On some cases of effective determination of the density of a non-homogeneous string by its spectral function. Dokl. Akad. Nauk SSSR 1953, 93, 4. [Google Scholar]
- Agranovich, Z.S.; Marchenko, V.A. The Inverse Problem of Scattering Theory; Kharkiv National University: Kharkov, Ukraine, 1960. [Google Scholar]
- Alekseev, A.S. Some inverse problems in wave propagation theory. Dokl. Akad. Nauk SSSR 1962, 11, 405–408. [Google Scholar]
- Blokh, A.S. On the Determination of a Differential Equation from its Spectral Function–Matrix. Dokl. Akad. Nauk SSSR 1953, 92, 2. [Google Scholar]
- Kay, I.; Moses, H.E. The determination of the scattering potential from the spectral measure function. Nuovo C. 1956, 3, 276–304. [Google Scholar] [CrossRef]
- Levin, B.Y. Distribution of the Roots of Integer Functions; Gostekhizdat: Moscow, Russia, 1956; p. 632. [Google Scholar]
- Levitan, B.M.; Gasymov, M.G. Determination of a differential equation by two spectra. Uspekhi Matem. Nauk. 1964, 19, 2. [Google Scholar] [CrossRef]
- Marchenko, V.A. Reconstruction of the potential energy from the phases of scattered waves. Dokl. Akad. Nauk SSSR 1955, 104, 5. [Google Scholar]
- Regge, T. Introduction to complex orbital momenta. Nuovo C. 1959, 14, 951–976. [Google Scholar] [CrossRef]
- Fermi, E.; Pasta, J.; Ulam, S. Studies of Nonlinear Problems—I; Report; Los Alamos Scintific Laboratory of the University of California: Los Almos, NM, USA, 1954. [Google Scholar]
- Newton, R.G. Construction of potentials from the phase shifts at fixed energy. J. Math. Phys. 1962, 3, 75–82. [Google Scholar] [CrossRef]
- Kruskal, N.J.; Zabussky, M.D. Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett. 1965, 15, 240. [Google Scholar]
- Lax, P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Commun. Pure Appl. Math. 1968, 21, 467–490, Matematika 1969, 13, 128–150. [Google Scholar] [CrossRef]
- Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 1970, 15, 539–541. [Google Scholar]
- Gardner, C.S. The Korteweg–de Vries Equation and Generalizations—IV. The Korteweg–de Vries Equation as a Hamiltonian System. J. Math. Phys. 1971, 12, 1548–1551. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media. Zh. Eksperim. Teoret. Fiz. 1971, 61, 118. [Google Scholar]
- Zakharov, V.E.; Faddeev, L.D. The Korteweg–de Vries equation: A completely integrable Hamiltonian system. Funkts. Anal. Ego Prilozheniya 1971, 5, 18–27. [Google Scholar]
- Shabat, A.B. On the Korteweg–de Vries equation. Dokl. Akad. Nauk SSSR 1973, 211, 6. [Google Scholar]
- Novikov, S.P. A periodic problem for the KdV equation. Funkts. Anal. Ego Prilozheniya 1974, 8, 236–246. [Google Scholar] [CrossRef]
- Lax, P.D. Periodic solutions of the KdV equation. Lect. Appl. Math. 1974, 15, 51. [Google Scholar] [CrossRef]
- Marchenko, V.A. The periodic KdV problem. Dokl. Akad. Nauk SSSR 1974, 217, 1052–1056. [Google Scholar]
- Zakharov, V.E.; Shabat, A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem—I. Funkts. Anal. Ego Prilozheniya 1974, 8, 43–53. [Google Scholar]
- Faddeev, L.D. The inverse problem in the quantum theory of scattering—II. In Current Problems in Mathematics; Loose Errata; Akad. Nauk SSSR Vsesojuz. Inst. Nauch. i Tehn. Informacii: Moscow, Russia, 1974; Volume 3, pp. 93–180. (In Russian) [Google Scholar]
- Newton, R.G. Inverse Schrodinger scattering in three dimensions. In Text and Monographs in Physics; Springer: Berlin, Germany, 1989. [Google Scholar]
- Zakharov, V.E.; Manakov, S.V. On the complete integrability of a nonlinear Schrödinger equation. Teoret. Matem. Fiz. 1974, 19, 332–343. [Google Scholar]
- Manakov, S.V. The inverse scattering method and two-dimensional evolution equations. Uspekhi Mat. Nauk. 1976, 31, 245–246. [Google Scholar]
- Zakharov, V.E.; Manakov, S.V. Generalization of the inverse scattering problem method. Teor. Matem. Fizika 1976, 27, 283–287. [Google Scholar] [CrossRef]
- Lax, P.D. Almost periodic solutions of the KdV equation. SIAM Rev. 1976, 18, 351–375. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Integration of nonlinear equations of mathematical physics by the method of the inverse scattering problem—II. Funkts. Anal. Ego Prilozheniya 1979, 13, 13–22. [Google Scholar]
- Zakharov, V.E.; Manakov, S.V.; Novikov, S.P.; Pitaevskii, L.P. The Theory of Solitons: The Inverse Problem Method; Nauka: Novosibirsk, Russia, 1980. [Google Scholar]
- Nizhnik, L.P.; Pochinayko, M.D. Integration of the nonlinear Schrodinger equation in two spatial dimensions by the inverse scattering method. Funkts. Anal. Ego Prilozheniya 1982, 16, 80–82. [Google Scholar]
- Veselov, A.P.; Novikov, S.P. Finite-zone two-dimensional Schrodinger operators. Potential operators. Dokl. Akad. Nauk SSSR 1984, 279, 4. [Google Scholar]
- Novikov, R.G.; Khenkin, G.M. Oscillating weakly localized solutions of the Korteweg–de Vries equation. Theor. Math. Phys. 1984, 61, 1089–1099. [Google Scholar] [CrossRef]
- Novikov, R.G. Construction of a two-dimensional Schrödinger operator with a given scattering amplitude at fixed energy. Theoret. Math. Phys. 1986, 66, 154–158. [Google Scholar] [CrossRef]
- Grinevich, P.G.; Novikov, R.G. Analogues of multisoliton potentials for the two-dimensional Schrodinger operator. Funct. Anal. Appl. 1985, 19, 276–285. [Google Scholar] [CrossRef]
- Grinevich, P.G.; Novikov, R.G. Analogues of multisoliton potentials for the two-dimensional Schrödinger equations and a nonlocal Riemann problem. Soviet Math. Dokl. 1986, 33, 9–12. [Google Scholar]
- Grinevich, P.G.; Manakov, S.V. Inverse scattering problem for the two-dimensional Schrödinger operator, the -method and nonlinear equations. Funct. Anal. Appl. 1986, 20, 94–103. [Google Scholar] [CrossRef]
- Boiti, M.; Leon, J.P.; Manna, M.; Pempinelli, F. On a spectral transform of a KdV-like equation related to the Schrödinger operator in the plane. Inverse Probl. 1987, 3, 25–36. [Google Scholar] [CrossRef]
- Tsai, T.-Y. The Schrödinger operator in the plane. Inverse Probl. 1993, 9, 763–787. [Google Scholar] [CrossRef]
- Nachman, A.I. Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 1996, 143, 71–96. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Konopelchenko, B.G.; Moro, A. Symmetric reductions of a real dispersionless Veselov–Novikov equation. Fund. Prikl. Matem. 2004, 10, 5–15. [Google Scholar]
- Lassas, M.; Mueller, J.L.; Siltanen, S. Mapping properties of the nonlinear Fourier transform in dimension two. Comm. Partial Differ. Equ. 2007, 32, 591–610. [Google Scholar] [CrossRef]
- Lassas, M.; Mueller, J.L.; Siltanen, S.; Stahel, A. The Novikov-Veselov equation and the inverse scattering method: II. Computation. Nonlinearity 2012, 25, 1799–1818. [Google Scholar] [CrossRef]
- Lassas, M.; Mueller, J.L.; Siltanen, S.; Stahel, A. The Novikov-Veselov equation and the inverse scattering method, Part I: Analysis. Phys. D 2012, 241, 1322–1335. [Google Scholar] [CrossRef]
- Music, M. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Probl. Imaging 2014, 8, 1151–1167. [Google Scholar] [CrossRef]
- Perry, P. Miura maps and inverse scattering for the Novikov-Veselov equation. Anal. Partial. Differ. Equ. 2014, 7, 311–343. [Google Scholar] [CrossRef]
- Francoise, J.-P.; Novikov, R.G. Solutions rationnelles des equations de type Korteweg–de Vries en dimension 2+ 1 et problemes a m corps sur la droite. Comptes rendus de l’Academie des sciences. Serie 1. Mathematique 1992, 314, 109–113. [Google Scholar]
- Novikov, R.G. Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension 2. Tr. Mat. Inst. Steklova 1999, 225, 301–318. [Google Scholar]
- Kazeykina, A.V.; Novikov, R.G. A large time asymptotics for transparent potentials for the Novikov–Veselov equation at positive energy. J. Nonlinear Math. Phys. 2011, 18, 377–400. [Google Scholar] [CrossRef]
- Music, M.; Perry, P.; Siltanen, S. Exceptional Circles of Radial Potentials. Inverse Probl. 2013, 29, 045004. [Google Scholar] [CrossRef]
- Bondarenko, N.P. Inverse problem solution and spectral data characterization for the matrix Sturm–Liouville operator with singular potential, Anal. Math. Phys. 2021, 11, 145. [Google Scholar] [CrossRef]
- Bondarenko, N.P. Spectral data characterization for the Sturm–Liouville operator on the star-shaped graph. Anal. Math. Phys. 2020, 10, 83. [Google Scholar] [CrossRef]
- Avdonin, S.A.; Mikhaylov, A.S.; Mikhaylov, V.S.; Park, J.C. Inverse problem for the Schrodinger equation with non-self-adjoint matrix potential. Inverse Probl. 2021, 37, 035002. [Google Scholar] [CrossRef]
- Xu, X.-C.; Bondarenko, N. Local solvability and stability of the generalized inverse Robin–Regge problem with complex coefficients. J. Inverse Ill-Posed Probl. 2023, 31, 711–721. [Google Scholar] [CrossRef]
- Pariiskii, B.S. The Inverse Problem for a Wave Equation with a Depth Effect. Some Direct and Inverse Problems of Seismology; Nauka: Moscow, Russia, 1968; pp. 25–40. [Google Scholar]
- Gopinath, B.; Sondhi, M. Determination of the shape of the human vocal tract from acoustical measurements. Bell System Tech. J. 1970, 49, 1195–1214. [Google Scholar] [CrossRef]
- Gopinath, B.; Sondh, M. Inversion of telegraph equation and synthesis of nonuniform lines. Proc. IEEE 1971, 59, 383–392. [Google Scholar] [CrossRef]
- Blagoveshchenskii, A.S. The Local Method of Solution of the Nonstationary Inverse Problem for an Inhomogeneous String; Trudy Matem Inst. Im. Steklova Akad. Nauk SSSR: Moscow, Russia, 1971; Volume 115, pp. 28–38. [Google Scholar]
- Alekseev, A.S.; Dobrinskii, V.I. Some questions of practical application of dynamic inverse problems of seismics. In Mathematical Problems of Geophysics; Computing Center of the Siberian Branch of USSR Academic Science: Novosibirsk, Russia, 1975; pp. 7–53. [Google Scholar]
- Yu, L.; Brodov, V.V.; Loctsik, V.M.; Markushevich, N.N.; Novikova, V.E.; Fedorov, S.B. Sinjunkhina, Monochromatic Sounding of the Upper Part of a Velocity Profile by a Horizontal Vibrator, Selected Papers from Volumes 24 and 25 of Vychislitel’naya Seysmologiya; American Geophysical Union: Washington, DC, USA, 2013; pp. 150–155. [Google Scholar]
- Pariiskii, B.S. Economical Methods for the Numerical Solutions of Convolution Equations and of Systems of Algebraic Equations with Töplitz Matrices; Computing Center of the Siberian Branch of USSR Academic Science: Novosibirsk, Russia, 1977. [Google Scholar]
- Symes, W.W. Inverse boundary value problems and a theorem of Gel’fand and Levitan. J. Math. Anal. Appl. 1979, 71, 378–402. [Google Scholar] [CrossRef]
- Burridge, R. The Gelfand–Levitan, the Marchenko and the Gopinath-Sondhi integral equation of inverse scattering theory, regarded in the context of inverse impulse-response problems. Wave Motion. 1980, 2, 305–323. [Google Scholar] [CrossRef]
- Santosa, F. Numerical scheme for the inversion of acoustical impedance profile based on the Gelfand–Levitan method. Geophys. J. Roy. Astr. Soc. 1982, 70, 229–244. [Google Scholar] [CrossRef]
- Kabanikhin, S.I. Projection-Difference Methods of Determination of the Coefficients of Hyperbolic Equations; Nauka: Novosibirsk, Russia, 1988. [Google Scholar]
- Romanov, V.G.; Kabanikhin, S.I. Inverse Problems of Geoelectrics; Nauka: Moscow, Russia, 1991. [Google Scholar]
- Alekseev, A.S.; Belonosov, V.S. Spectral Methods in One-Dimensional Problems of Wave Propagation Theory; Institute of Computational Mathematics and Mathematical Geophysics: Novosibirsk, Russia, 1998. [Google Scholar]
- Belishev, M.I. On an approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR 1987, 297, 524–527. [Google Scholar]
- Kabanikhin, S.I. Linear Regularization of Multidimensional Inverse Problems for Hyperbolic Equations; Preprint No. 27; Institute of Mathematics of the Siberian Branch of the Russian Academic Science: Novosibirsk, Russia, 1988. [Google Scholar]
- Belishev, M.I.; Blagoveshchenskii, A.S. Multidimensional analogs of equations of the Gelfand–Levitan–Krein type in the inverse problem for the wave equation. In Ill-Posed Problems of of Mathematical Physics and Analysis; American Mathematical Society: Ann Arbor, MI, USA, 1992; pp. 50–63. [Google Scholar]
- Kabanikhin, S.I.; Shishlenin, M.A. Boundary control and Gelfand–Levitan–Krein methods in inverse acoustic problem. J. Inv. Ill-Posed Probl. 2004, 12, 125–144. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Satybaev, A.D.; Shishlenin, M.A. Direct Methods of Solving Inverse Hyperbolic Problems; VSP: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Kabanikhin, S.I.; Shishlenin, M.A. Numerical algorithm for two-dimensional inverse acoustic problem based on Gel’fand-Levitan–Krein equation. J. Inverse Ill-Posed Probl. 2011, 18, 979–995. [Google Scholar] [CrossRef]
- Shishlenin, M.A.; Novikov, N.S. Comparative analysis of two numerical methods for solving the Gelfand–Levitan–Krein equation. Sib. Electron. Math. Rep. 2011, 8, 379–393. [Google Scholar]
- Druskin, V.; Mamonov, A.V.; Thaler, A.E.; Zaslavsky, M. Direct, Nonlinear Inversion Algorithm for Hyperbolic Problems via Projection-Based Model Reduction. Siam J. Imaging Sci. 2016, 9, 684–747. [Google Scholar] [CrossRef]
- Borcea, L.; Druskin, V.; Mamonov, A.; Zaslavsky, M. Untangling the nonlinearity in inverse scattering with data-driven reduced order models. Inverse Probl. 2018, 34, 065008. [Google Scholar] [CrossRef]
- Druskin, V.; Moskow, S.; Zaslavsky, M. Lippmann–Schwinger–Lanczos algorithm for inverse scattering problems. Inverse Probl. 2021, 37, 075003. [Google Scholar] [CrossRef]
- Romanov, V.G. Justification of the Gelfand–Levitan–Krein Method for a Two-Dimensional Inverse Problem. Sib. Math. J. 2021, 62, 908–924. [Google Scholar] [CrossRef]
- Kabanikhin, S.; Shishlenin, M.; Novikov, N. Multidimensional analogs of Gelfand–Levitan–Krein equations. In Proceedings of the 6th International Conference on Control and Optimization with Industrial Applications, Khalilov, Baku, 11–13 July 2018; Institute of Applied Mathematics: Khalilov, Baku, 2018; pp. 31–33. [Google Scholar]
- Shishlenin, M.A.; Izzatulah, M.; Novikov, N.S. Comparative Study of Acoustic Parameter Reconstruction by using Optimal Control Method and Inverse Scattering Approach. J. Phys. Conf. Ser. 2021, 2092, 012004. [Google Scholar] [CrossRef]
- Novikov, N.; Shishlenin, M. Direct Method for Identification of Two Coefficients of Acoustic Equation. Mathematics 2023, 11, 3029. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Novikov, N.S.; Shishlenin, M.A. Gelfand–Levitan–Krein method in one-dimensional elasticity inverse problem. J. Phys. Conf. Ser. 2021, 2092, 012022. [Google Scholar] [CrossRef]
- Kabanikhin, S.; Novikov, N.; Shishlenin, M. Linear seismic data processing of area observing systems. In Proceedings of the 6th International Conference on Control and Optimization with Industrial Applications, Khalilov, Baku, 11–13 July 2018; Institute of Applied Mathematics: Khalilov, Baku, 2018; pp. 219–221. [Google Scholar]
- Kabanikhin, S.I.; Shishlenin, M.A. Digital field. Georesursy. Georesources 2018, 20, 139–141. [Google Scholar] [CrossRef]
- Baev, A.V. On t-local solvability of inverse scattering problems in two-dimensional layered media. Comput. Math. Math. Phys. 2015, 55, 1033–1050. [Google Scholar] [CrossRef]
- Baev, A.V. Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media. Comput. Math. Math. Phys. 2016, 56, 2043–2055. [Google Scholar] [CrossRef]
- Baev, A.V. Imaging of layered media in inverse scattering problems for an acoustic wave equation. Math. Model. Comput. Simulations 2016, 8, 689–702. [Google Scholar] [CrossRef]
- Baev, A.V.; Gavrilov, S.V. The Inverse Scattering Problem in a Nonstationary Medium. Comput. Math. Model. 2019, 30, 218–229. [Google Scholar] [CrossRef]
- Belishev, M.I. Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Probl. 1997, 13, R1–R45. [Google Scholar] [CrossRef]
- Belishev, M.I.; Blagoveshchenskii, A.S. Dynamic Inverse Problems of Wave Theory; Publication House of Saint-Petersburg State University: Saint-Petersburg, Russia, 1999. [Google Scholar]
- Belishev, M.I. Recent progress in the boundary-control method. Inverse Probl. 2007, 23, R1–R67. [Google Scholar] [CrossRef]
- Belishev, M.I. Boundary control and inverse problems: The one-dimensional variant of the BC method. In Mathematical Problems in the Theory of Wave Propagation; Zap. Nauchn. Sem. POMI: Saint-Petersburg, Russia, 2008; Volume 37. [Google Scholar]
- Beilina, L.; Klibanov, M.V.; Kokurin, M.Y. Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. J. Math. Sci. 2010, 167, 279–325. [Google Scholar] [CrossRef]
- Klibanov, M.V.; Timonov, A. A comparative study of two globally convergent numerical methods for acoustic tomography. Commun. Anal. Comput. 2023, 1, 12–31. [Google Scholar] [CrossRef]
- Klibanov, M.V.; Jingzhi, L. Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data; De Gruyter: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Klibanov, M. Carleman estimates for the regularization of ill-posed Cauchy problems. Appl. Numer. Math. 2015, 94, 46–74. [Google Scholar] [CrossRef]
- Klibanov Michael, V. Global convexity in a three-dimensional inverse acoustic problem. Siam J. Math. Anal. 1997, 28, 1371–1388. [Google Scholar] [CrossRef]
- Kuzhuget, A.V.; Beilina, L.; Klibanov, M.V.; Sullivan, A.; Nguyen, L. Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm. Inverse Probl. 2012, 28, 095007. [Google Scholar] [CrossRef]
- Klibanov Michael, V. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Probl. 2013, 21, 477–560. [Google Scholar] [CrossRef]
- Yurko, V.A. Introduction to the Theory of Inverse Spectral Problems; Fizmatlit: Moscow, Russia, 2007. [Google Scholar]
- Romanov, V.G. Inverse Problems of Mathematical Physics; Nauka: Moscow, Russia, 1984. [Google Scholar]
- Novikov, R.G. Inverse scattering for the Schrodinger equation in dimension 1 up to smooth functions. Bull. Des Sci. Math. 1996, 120, 473–491. [Google Scholar]
- Kudryashov, N.A. Analytical Theory of Nonlinear Differential Equations; Ijevsk: Moscow, Russia, 2004; p. 361. (In Russian) [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; MSU Quantum Technology Centre: Moscow, Russia, 1963; p. 704. (In Russian) [Google Scholar]
- Rakesh. An inverse problem for the wave equation in the half plane. Inverse Probl. 1993, 9, 433–441. [Google Scholar] [CrossRef]
- Sylvester, J.; Uhlmann, G. A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 1987, 125, 153–169. [Google Scholar] [CrossRef]
- Kabanikhin, S.I. On linear regularization of multidimensional inverse problems for hyperbolic equations. Sov. Math. Dokl. 1990, 40, 579–583. [Google Scholar]
- Kabanikhin, S.I. Regularization of multidimensional inverse problems for hyperbolic equations based on a projection method. Doklady Akademii Nauk. 1987, 292, 534–537. [Google Scholar]
- Kabanikhin, S.I.; Shishlenin, M.A. Quasi-solution in inverse coefficient problems. J. Inverse Ill-Posed Probl. 2008, 16, 705–713. [Google Scholar] [CrossRef]
- Gladwell, G.M.L.; Willms, N.B. A discrete Gelfand–Levitan method for band-matrix inverse eigenvalue problems. Inverse Probl. 1989, 5, 165–179. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Bakanov, G.B. Discrete Analogy of Gelfand–Levitan Method. Doklady Akademii Nauk 1997, 356, 157–160. [Google Scholar]
- Kabanikhin, S.I.; Bakanov, G.B. A discrete analog of the Gelfand–Levitan method in a two-dimensional inverse problem for a hyperbolic equation. Sib. Math. J. 1999, 40, 262–280. [Google Scholar] [CrossRef]
- Natterer, F. A Discrete Gelfand–Levitan Theory; Technical Report; Institut fuer Numerische und Instrumentelle Mathematik Universitaet Munster: Muenster, Germany, 1994. [Google Scholar]
- Kabanikhin, S.; Sabelfeld, K.; Novikov, N.; Shishlenin, M. Numerical solution of the multidimensional Gelfand–Levitan equation. J. Inverse Ill-Posed Probl. 2015, 23, 439–450. [Google Scholar] [CrossRef]
- Novikov, N.S. Comparative analysis of numerical methods for solving two-dimensional Gelfand–Levitan equation. Sib. Electron. Math. Rep. 2014, 23, 132–144. [Google Scholar]
- Kabanikhin, S.; Sabelfeld, K.; Novikov, N.; Shishlenin, M. Numerical solution of an inverse problem of coefficient recovering for a wave equation by a stochastic projection methods. Monte Carlo Methods Appl. 2015, 21, 189–203. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Novikov, N.S.; Oseledets, I.V.; Shishlenin, M.A. Fast Toeplitz linear system inversion for solving two-dimensional acoustic inverse problem. J. Inverse Ill-Posed Probl. 2015, 23, 687–700. [Google Scholar] [CrossRef]
- Kabanikhin, S.I.; Scherzer, O.; Shishlenin, M.A. Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation. J. Inverse Ill-Posed Probl. 2003, 11, 87–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabanikhin, S.; Shishlenin, M.; Novikov, N.; Prokhoshin, N. Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations. Mathematics 2023, 11, 4458. https://doi.org/10.3390/math11214458
Kabanikhin S, Shishlenin M, Novikov N, Prokhoshin N. Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations. Mathematics. 2023; 11(21):4458. https://doi.org/10.3390/math11214458
Chicago/Turabian StyleKabanikhin, Sergey, Maxim Shishlenin, Nikita Novikov, and Nikita Prokhoshin. 2023. "Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations" Mathematics 11, no. 21: 4458. https://doi.org/10.3390/math11214458
APA StyleKabanikhin, S., Shishlenin, M., Novikov, N., & Prokhoshin, N. (2023). Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations. Mathematics, 11(21), 4458. https://doi.org/10.3390/math11214458