A Note on the LogRank Conjecture in Communication Complexity
Abstract
:1. Introduction
2. Preliminaries
- alternative representation of f modulo m, if
- 0-a-strong representation of f modulo m, if it is an alternative representation, and furthermore, if for some i, then
- 1-a-strong representation of f modulo m, if it is an alternative representation, and furthermore, if for some i, then
- (i)
- all coefficients of f and are either 1 or −1 mod m, and
- (ii)
- g is a 1-a-strong representation of f and also of , where and g are multilinear, homogeneous degree-d polynomials, that is, every monomials of and g are degree d,then modulo m. Clearly, one can set the monomials of f or to 1 one by one, and the -multiplied monomials need to be 0 in g because of homogeneity.
3. The LogRank Protocol
- (i)
- First, we may assume that both players know the rank decomposition of the communication matrix of F: .
- (ii)
- Alice substitutes the integer values of the numbers for into (5) for each j, and communicates the mod m values of the (5) sums for to Bob.
- (iii)
- Bob knows the values of , for . Consequently, he, privately, without any communication, computes the value of (3).
4. Remarks and Examples
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, A.C. Some Complexity Questions Related to Distributed Computing. In Proceedings of the 11th Annual ACM Symposium on Theory of Computing, Atlanta, GA, USA, 30 April–2 May 1979; pp. 209–213. [Google Scholar]
- Lovász, L. Communication complexity: A survey. In Paths, Flows, and VLSI-Layout; Korte, B., Lovász, L., Prömel, H., Schrijver, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 235–265. [Google Scholar]
- Kushilevitz, E.; Nisan, N. Communication Complexity; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Nisan, N. The communication complexity of threshold gates. In Combinatorics, Paul Erdős Is Eighty, Volume I; Sós, V.T., Miklós, D., Szőnyi, T., Eds.; János Bolyai Mathematical Society: Budapest, Hungary, 1993; pp. 301–315. [Google Scholar]
- Nisan, N.; Wigderson, A. On rank vs. communication complexity. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 831–836. [Google Scholar]
- Babai, L.; Nisan, N.; Szegedy, M. Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs. J. Comput. Syst. Sci. 1992, 45, 204–232. [Google Scholar] [CrossRef]
- Grolmusz, V. The BNS lower bound for multi-party protocols is nearly optimal. Inform. Comput. 1994, 112, 51–54. [Google Scholar] [CrossRef]
- Lovett, S. Communication is Bounded by Root of Rank. J. ACM 2016, 63, 1–9. [Google Scholar] [CrossRef]
- Rao, A.; Yehudayoff, A. Communication Complexity; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Karchmer, M. Communication Complexity; ACM Doctoral Dissertation Award; MIT Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Håstad, J.; Goldmann, M. On the Power of the Small-Depth Threshold Circuits. Comput. Complex. 1991, 1, 113–129. [Google Scholar] [CrossRef]
- Grolmusz, V. A lower bound for depth-3 circuits with mod m gates. Inform. Proc. Lett. 1998, 67, 87–90. [Google Scholar] [CrossRef]
- Grolmusz, V. A Degree-Decreasing Lemma for (MODq − MODp) Circuits. Discret. Math. Theor. Comput. Sci. 2001, 4, 247–254. [Google Scholar]
- Grolmusz, V. Separating the communication complexities of MOD m and MOD p circuits. J. Comput. Syst. Sci. 1995, 51, 307–313. [Google Scholar] [CrossRef]
- Grolmusz, V. On the Weak mod m Representation of Boolean Functions. Chic. J. Theor. Comput. Sci. 1995, 1995, 2. [Google Scholar]
- Grolmusz, V.; Tardos, G. Lower Bounds for (MOD p-MOD m) Circuits. SIAM J. Comput. 2000, 29, 1209–1222. [Google Scholar] [CrossRef]
- Grolmusz, V. Harmonic Analysis, Real Approximation, and the Communication Complexity of Boolean Functions. Algorithmica 1999, 23, 341–353. [Google Scholar] [CrossRef]
- Karchmer, M.; Newman, I.; Saks, M.E.; Wigderson, A. Non-deterministic Communication Complexity with Few Witness. J. Comput. Syst. Sci. 1994, 49, 247–257. [Google Scholar] [CrossRef]
- Mehlhorn, K.; Schmidt, E. Las Vegas is better than determinism in VLSI and distributive computing. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, San Francisco, CA, USA, 5–7 May 1982; pp. 330–337. [Google Scholar]
- Lovász, L.; Saks, M. Lattices, Möbius functions, and communication complexity. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, White Plains, NY, USA, 24–26 October 1988; pp. 81–90. [Google Scholar]
- Singer, N.; Sudan, M. Point-hyperplane Incidence Geometry and the Log-rank Conjecture. Acm Trans. Comput. Theory 2022, 14, 1–16. [Google Scholar] [CrossRef]
- Wu, H.L. On the Communication Complexity of AND Functions. IEEE Trans. Inf. Theory 2021, 67, 4929–4935. [Google Scholar] [CrossRef]
- Gál, A.; Syed, R. Upper Bounds on Communication in Terms of Approximate Rank. In Computer Science—Theory and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 116–130. [Google Scholar] [CrossRef]
- Knop, A.; Lovett, S.; McGuire, S.; Yuan, W. Log-rank and lifting for AND-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual, 21–25 June 2021. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Mande, N.S.; Sherif, S. The Log-Approximate-Rank Conjecture Is False. J. ACM 2020, 67, 23. [Google Scholar] [CrossRef]
- Kol, G.; Moran, S.; Shpilka, A.; Yehudayoff, A. Approximate Nonnegative Rank is Equivalent to the Smooth Rectangle Bound. Comput. Complex. 2019, 28, 1–25. [Google Scholar] [CrossRef]
- Sinha, M.; de Wolf, R. Exponential Separation between Quantum Communication and Logarithm of Approximate Rank. In Proceedings of the 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), Baltimore, MD, USA, 9–12 November 2019. [Google Scholar] [CrossRef]
- Grolmusz, V. Computing Elementary Symmetric Polynomials with a Sub-Polynomial Number of Multiplications. SIAM J. Comput. 2003, 32, 1475–1487. [Google Scholar] [CrossRef]
- Grolmusz, V. Modular Representations of Polynomials: Hyperdense Coding and Fast Matrix Multiplication. IEEE Trans. Inf. Theory 2008, 54, 3687–3692. [Google Scholar] [CrossRef]
- Barrington, D.A.M.; Beigel, R.; Rudich, S. Representing Boolean functions as polynomials modulo composite numbers. Comput. Complex. 1994, 4, 367–382. [Google Scholar] [CrossRef]
- Tardos, G.; Barrington, D.A.M. A Lower Bound on the MOD 6 Degree of the OR Function. Comput. Complex. 1998, 7, 99–108. [Google Scholar] [CrossRef]
- Grolmusz, V. Superpolynomial size set systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica 2000, 20, 1–14. [Google Scholar] [CrossRef]
- Grolmusz, V. Set-Systems with Restricted Multiple Intersections. Electron. J. Comb. 2002, 9, e1625. [Google Scholar] [CrossRef] [PubMed]
- Grolmusz, V. Constructing set-systems with prescribed intersection sizes. J. Algorithms 2002, 44, 321–337. [Google Scholar] [CrossRef]
- Grolmusz, V. A Note on Explicit Ramsey Graphs and Modular Sieves. Combinatorics, Probability and Computing 2003, 12, 565–569. [Google Scholar] [CrossRef]
- Grolmusz, V. Co-Orthogonal Codes. Des. Codes Cryptogr. 2006, 38, 363–372. [Google Scholar] [CrossRef]
- Grolmusz, V. Pairs of codes with prescribed Hamming distances and coincidences. Des. Codes Cryptogr. 2006, 41, 87–99. [Google Scholar] [CrossRef]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 5th ed.; Clarendon Press: Oxford, UK, 1995. [Google Scholar]
- Grolmusz, V. Hyperdense Coding Modulo 6 with Filter-Machines. arXiv 2003, arXiv:cs/0306049. [Google Scholar]
- Imre, S. Quantum Hyperdense Coding for Distributed Communications. arXiv 2012, arXiv:1210.2856. [Google Scholar]
- Bebrov, G. On the Hyperdense Coding and Proposal of Hyperdense Coding Quantum Secure Communication Protocol. In Proceedings of the Quantum Information and Measurement (QIM) V: Quantum Technologies, Rome, Italy, 4–6 April 2019; Optica Publishing Group: Washington, DC, USA, 2019; p. T5A.49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grolmusz, V. A Note on the LogRank Conjecture in Communication Complexity. Mathematics 2023, 11, 4651. https://doi.org/10.3390/math11224651
Grolmusz V. A Note on the LogRank Conjecture in Communication Complexity. Mathematics. 2023; 11(22):4651. https://doi.org/10.3390/math11224651
Chicago/Turabian StyleGrolmusz, Vince. 2023. "A Note on the LogRank Conjecture in Communication Complexity" Mathematics 11, no. 22: 4651. https://doi.org/10.3390/math11224651
APA StyleGrolmusz, V. (2023). A Note on the LogRank Conjecture in Communication Complexity. Mathematics, 11(22), 4651. https://doi.org/10.3390/math11224651