Fourier Transform of the Lippmann-Schwinger Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes
Abstract
:1. Introduction
2. Backgrounds and Purpose
The LS Equation for Electromagnetic Scattering
- and are the total and incident electric field;
- is the wavenumber in the background medium, assumed to be real;
- is the relative difference between scatterer and background complex permittivity: . The scatterer medium is possibly dispersive— depends on —, dissipative — is complex—, and anisotropic— is a tensor. In the case of an isotropic medium, boils down to a scalar. If is constant inside the scatterer, is proportional to the indicator function, and will be denoted like this in the following.
- G is the Green function of Helmholtz equation in vacuum (with and ).Note that if one chooses the convention for harmonic time evolution (as we do), the outgoing Sommerfeld condition [32] imposes:
3. Fourier Transform of the Singular Part
3.1. General Expression as a Convolution
3.2. Explicit Calculation
3.2.1. The Tridimentional Case,
3.2.2. General Notation
4. Fourier Transform of the Regular Part
4.1. Radial Distributions and Grafakos Theorem
4.1.1. Radial Distributions
- if u is radial distribution, we define by
- if , we define a radial distribution u by
4.1.2. Grafakos–Teschl Theorem
4.2. Fourier Transform of the Regular Part of
Procedure for Computing the FT in
- We need to find a one-dimensional distribution, , which verifies( being the 1-sphere surface). Note that finding may be, generally speaking, a difficult task.
- One computes the one-dimensional Fourier Transform .
- The FT we seek, , is then defined by
- Note that if is not a distribution, but a regular function, one directly writes
- The contribution of to has been calculated, (see [31], Sec. IV. A. 3. of the Supplementary Information), and is
- Rewriting , and using ([31], 1. and 2. page 14 of the main text),the contribution of this term to is
- Similarly, the term gives a contribution
- the term gives a contribution, see ([31], 1. page 15 of the main text):
- a similar calculation proves that the term gives a contribution
- the term gives a contribution, (see [31], 2. page 15 of the main text):
4.3. Fourier Transform of the Regular Part of
4.3.1. Fourier Transform of
4.3.2. Expression in the General Notation
5. Discussion
5.1. Integrability Condition
5.2. At Infinity: Sommerfeld’s Rule
5.3. Electromagnetic Scattering
5.3.1. Solution for a Spherical Scatterer, in the Low Contrast Limit
5.3.2. Scattering by an Ensemble of Spheres or Ellipsoids: A Born Expansion
- (1)
- Knowing in real space, compute the internal field ,
- (2)
- Make a 3D FFT to obtain in Fourier space,
- (3)
- Multiply the result by , one obtains ,
- (4)
- Invert the 3D FFT to obtain the field in real space, inside and outside the scatterers.
- (5)
- Iterate to step (1), with
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Fourier Transform and Notations
Appendix A.1. Fourier Transform of a Function
Appendix A.2. Fourier Transform of a Tempered Distribution
Appendix A.3. Fourier Transform of a Convolution
Appendix A.4. Fourier Transform of a Product
Appendix A.5. Alternative Notation Used in This Article
Appendix B. Lemma on Spherical Properties
Appendix B.1. Spherical Properties
Appendix B.2. Detailed Computation of the Integrals for
References
- Goodman, J. Introduction to Fourier Optics, 2nd ed.; Mc Graw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Lalanne, P.; Morris, G.M. Highly improved convergence of the coupled-wave mathod for TM polarization. J. Opt. Soc. Am. A 1996, 13, 779. [Google Scholar] [CrossRef]
- Granet, G.; Guizal, B. Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A 1996, 13, 1019–1023. [Google Scholar] [CrossRef]
- Knop, K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am. 1978, 68, 1206–1210. [Google Scholar] [CrossRef]
- Popov, E.; Nevière, M. Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media. J. Opt. Soc. Am. A 2001, 18, 2886–2894. [Google Scholar] [CrossRef]
- Bertrand, A.; Dumur, F.; Mruczkiewicz, M.; Perrin, M.; Lartigau-Dagron, C.; Bousquet, A.; Vignau, L.; Billon, L.; Fasquel, S. Bottom-up honeycomb top layer for light outcoupling enhancement in blue organic light emitting diodes. Org. Electron. 2018, 52, 222–229. [Google Scholar] [CrossRef]
- Dumur, F.; Reculusa, S.; Mruczkiewicz, M.; Perrin, M.; Vignau, L.; Fasquel, S. Multilayer Langmuir-Blodgett films as diffractive external 3D photonic crystal in blue OLEDs. Opt. Express 2016, 24, 27184–27198. [Google Scholar] [CrossRef]
- Bachelet, A.; Fasquel, S.; Rampnoux, J.M.; Jonusauskas, G.; Takimiya, K.; Hirsch, L.; Perrin, M.; Abbas, M. Wide Range Color Tuning in Single Emissive Layer Organic Light Emitting Transistors. ACS Photonics 2023, 10, 2793–2798. [Google Scholar] [CrossRef]
- Arnoldus, H.F. Representation of the near-field, middle-field, far-field electromagnetic Green’s functions in reciprocal space. J. Opt. Soc. Am. B 2001, 18, 547–555. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Lin, J.; Kou, S.S. Rayleigh-Sommerfeld diffraction formula in k space. J. Opt. Soc. Am. A 2013, 30, 1180–1183. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Kou, S.S.; Lin, J. The Green-function transform and wave propagation. Front. Phys. 2014, 2, 67. [Google Scholar] [CrossRef]
- Schmalz, J.A.; Schmalz, G.; Gureyev, T.E.; Pavlov, K.M. On the derivation of the Green’s function for the Helmholtz equation using generalized functions. Am. J. Phys. 2010, 78, 181. [Google Scholar] [CrossRef]
- Acquista, C. Light scattering by tenous particles: A generalization of the Rayleigh-Gans-Rocard approach. Appl. Opt. 1976, 15, 2932–2936. [Google Scholar] [CrossRef] [PubMed]
- Gallatin, G.M. Fourier, gauss, fraunhofer, porod and the shape from moments problem. J. Math. Phys. 2012, 53, 013509. [Google Scholar] [CrossRef]
- Ciccariello, S.; Schneider, J.-M.; Schonfeld, B.; Kostorz, G. Generalization of Porod’s law of small-angle scattering to anisotropic samples. Euro Phys. Lett. 2000, 50, 601–607. [Google Scholar] [CrossRef]
- Vynck, K.; Pierrat, R.; Carminati, R. Polarization and spatial coherence of electromagnetic waves in uncorrelated disordered media. Phys. Rev. A 2014, 89, 013842. [Google Scholar] [CrossRef]
- Kahnert, F.M. Numerical methods in electromagnetic scattering theory. J. Quant. Spect. Rad. Transf. 2003, 79–80, 775–824. [Google Scholar] [CrossRef]
- Bai, Q.; Perrin, M.; Sauvan, C.; Hugonin, J.; Lalanne, P. Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt. Express 2013, 21, 27371–27382. [Google Scholar] [CrossRef]
- Waterman, P.C. Matrix formulation of electromagnetic scattering. Proc. IEEE 1965, 53, 805–812. [Google Scholar] [CrossRef]
- Egel, A.; Pattelli, L.; Mazzamuto, G.; Wiersma, D.S.; Lemmer, U. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. J. Quant. Spect. Rad. Transf. 2017, 199, 103–110. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectr. Rad. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Hu, S.; Liu, L.; Gao, T.; Zeng, Q. Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes. Appl. Sci. 2019, 9, 4423. [Google Scholar] [CrossRef]
- Schebarchov, D.; Ru, E.C.L.; Grand, J.; Auguié, B. Mind the gap: Testing the Rayleigh hypothesis in T-matrix calculations with adjacent spheroids. Opt. Express 2019, 27, 35750–35760. [Google Scholar] [CrossRef]
- Budko, N.V.; Samokhin, A.B. Spectrum of the volume integral operator of electromagnetic scattering. SIAM J. Sci. Comput. 2006, 28, 682–700. [Google Scholar] [CrossRef]
- Zouros, G.P.; Budko, N.V. Transverse electric scattering on inhomogeneous objects: Spectrum of integral operator and preconditioning. SIAM J. Sci. Comput. 2012, 34, B226–B246. [Google Scholar] [CrossRef]
- Baddour, N. Operational and convolution properties of three-dimensional Fourier transforms in spherical polar coordinates. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2010, 27, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics, Volume 3 of Scattering Theory; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Samokhin, A.B.; Shestopalov, Y.V.; Shestopalov, I.U.V. Integral Equations and Iteration Methods in Electromagnetic Scattering; VSP: Zeist, The Netherlands, 2001. [Google Scholar]
- Perrin, M.; Gruy, F. Explicit calculation of singular integrals of tensorial polyadic kernels. Q. Appl. Math. 2023, 81, 65–86. [Google Scholar] [CrossRef]
- Grafakos, L.; Teschl, G. On Fourier transforms of radial functions and distributions. J. Fourier Anal. Appl. 2013, 19, 167–179. [Google Scholar] [CrossRef]
- Gruy, F.; Perrin, M.; Rabiet, V. Fourier Transform of the Lippmann-Schwinger Equation for 3D Vectorial Electromagnetic Scattering: A Direct Relationship between Fields and Shape. Available online: https://hal.archives-ouvertes.fr/hal-03043716 (accessed on 7 December 2020).
- Schot, S.H. Eighty years of Sommerfeld’s radiation condition. Hist. Math. 1992, 19, 385–401. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Grafakos, L. Classical Fourier Analysis. In Graduate Texts in Mathematics, 3rd ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Rabiet, V. Fourier Transform of a Class of Radial and Semi-Radial Functions. Available online: https://hal.archives-ouvertes.fr/hal-02494837 (accessed on 29 February 2020).
- Matiur, R. Applications of Fourier Transforms to Generalized Functions; WIT Press: Billerica, MA, USA, 2011. [Google Scholar]
- Delabre, U.; Feld, K.; Crespo, E.; Whyte, G.; Sykes, C.; Seifert, U.; Guck, J. Deformation of phospholipid vesicles in an optical stretcher. Soft Matter 2015, 11, 6075–6088. [Google Scholar] [CrossRef]
- Crouzil, T.; Perrin, M. Dynamics of a chain of optically coupled micro droplets. J. Eur. Opt. Soc.-Rapid Publ. 2013, 8, 13079-1. [Google Scholar] [CrossRef]
- Kilgore, K.; Moskow, S.; Schotland, J.C. Convergence of the Born and inverse Born series for electromagnetic scattering. Appl. Anal. 2017, 96, 1737–1748. [Google Scholar] [CrossRef]
- Villeneuve, P.R.; Piché, M. Photonic bandgaps: What is the best numerical representation of periodic structures? J. Mod. Opt. 1994, 41, 241–256. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Popov, E.; Nevière, M.; Bonod, N. Factorization of products of discontinuous functions applied to Fourier–Bessel basis. J. Opt. Soc. Am. A 2004, 21, 46–52. [Google Scholar] [CrossRef]
- Parker, K.J. Apodization and Windowing Functions. IEEE Trans. Ultrason. Ferro. Freq. Control 2013, 60, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Amarouchene, Y.; Mangeat, M.; Vidal-Montes, B.; Ondic, L.; Guerin, T.; Dean, D.S.; Louyer, Y. Nonequilibrium Dynamics Induced by Scattering Forces for Optically Trapped Nanoparticles in Strongly Inertial Regimes. Phys. Rev. Lett. 2019, 122, 183901. [Google Scholar] [CrossRef]
- Bellando, L.; Kleine, M.; Amarouchene, Y.; Perrin, M.; Louyer, L. Giant Diffusion of Nanomechanical Rotors in a Tilted Washboard Potential. Phys. Rev. Lett. 2022, 129, 023602. [Google Scholar] [CrossRef] [PubMed]
- Hüpfl, J.; Bachelard, N.; Kaczvinszki, M.; Horodynski, M.; Kühmayer, M.; Rotter, S. Optimal Cooling of Multiple Levitated Particles through Far-Field Wavefront Shaping. Phys. Rev. Lett. 2023, 130, 083203. [Google Scholar] [CrossRef]
- Leitersdorf, O.; Boneh, Y.; Gazit, G.; Ronen, R.; Kvatinsky, S. FourierPIM: High-throughput in-memory Fast Fourier Transform and polynomial multiplication. Mem.-Mater. Devices Circuits Syst. 2023, 4, 100034. [Google Scholar] [CrossRef]
- Perrin, M. Eigen-energy effects and non-orthogonality in the quasi-normal mode expansion of maxwell equations. Opt. Express 2016, 24, 27137–27151. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Faggiani, R.; Lalanne, P. Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 2018, 97, 205422. [Google Scholar] [CrossRef]
- Sauvan, C. Quasinormal modes expansions for nanoresonators made of absorbing dielectric materials: Study of the role of static modes. Opt. Express 2021, 29, 8268–8282. [Google Scholar] [CrossRef] [PubMed]
- Bouwmans, G.; Pureur, V.; Betourne, A.; Quiquempois, Y.; Perrin, M.; Bigot, L.; Douay, M. Progress in solid core photonic bandgap fibers. Opt. Quantum Electron. 2007, 39, 949–961. [Google Scholar] [CrossRef]
Tensor Components | Components of |
---|---|
1 | |
Tensor Order | Definition of Coefficients | Value |
---|---|---|
0 | ||
1 | ||
2 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruy, F.; Rabiet, V.; Perrin, M. Fourier Transform of the Lippmann-Schwinger Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes. Mathematics 2023, 11, 4691. https://doi.org/10.3390/math11224691
Gruy F, Rabiet V, Perrin M. Fourier Transform of the Lippmann-Schwinger Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes. Mathematics. 2023; 11(22):4691. https://doi.org/10.3390/math11224691
Chicago/Turabian StyleGruy, Frederic, Victor Rabiet, and Mathias Perrin. 2023. "Fourier Transform of the Lippmann-Schwinger Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes" Mathematics 11, no. 22: 4691. https://doi.org/10.3390/math11224691
APA StyleGruy, F., Rabiet, V., & Perrin, M. (2023). Fourier Transform of the Lippmann-Schwinger Equation: Solving Vectorial Electromagnetic Scattering by Arbitrary Shapes. Mathematics, 11(22), 4691. https://doi.org/10.3390/math11224691