An Invariant of Riemannian Type for Legendrian Warped Product Submanifolds of Sasakian Space Forms
Abstract
:1. Introduction and Main Motivations
2. Preliminaries
- (1)
- Let , then
- (2)
- If , then
2.1. An Application for Warped Product Legendrian Submanifold in with
- (a)
- (b)
- for
2.2. An Application for Warped Product Submanifold in with
- (a)
- or
- (b)
- for
2.3. Some Applications to Obtain Dirichlet Eigenvalue Inequalities
2.4. An Applications for Brochler Formulas
3. Chern’s Problem: Finding the Conditions under Which Warped Products Must Be Minimal
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Bishop, R.L.; O’Neil, B. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–9. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- O’Neil, B. Semi-Riemannian Geometry with Applications to Relativity; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Chen, B.Y. δ-invariants, Inequalities of Submanifolds and Their Applications. In Topics in Differential Geometry; Editura Academiei Romane: Bucharest, Romania, 2008; pp. 29–55. [Google Scholar]
- Besse, A. Einstein Manifolds; Springer: New York, NY, USA; Berlin, Germany, 1987. [Google Scholar]
- Chen, B.Y. A tour through δ-invariants: From Nash embedding theorem to ideal immersions, best ways of living and beyond. Publ. Inst. Math. 2013, 94, 108. [Google Scholar] [CrossRef]
- Chen, B.Y.; Dillen, F.; Verstraelen, L.; Vrancken, L. Characterization of Riemannian space forms, Einstein spaces, and conformally flat spaces. Proc. Am. Math. Soc. 1999, 128, 589–598. [Google Scholar] [CrossRef]
- Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants, and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Chen, B.Y. On isometric minimal immersions from warped products into real space forms. In Proceedings of the Edinburgh Mathematical Society; Cambridge University Press: Cambridge, UK, 2002; Volume 45, pp. 579–587. [Google Scholar]
- Chen, B.-Y.; Blaga, A.M.; Vilcu, G.E. Differential geometry of submanifolds in Complex space forms involving δ-invariants. Mathematics 2022, 10, 591. [Google Scholar] [CrossRef]
- Chen, B.Y.; Dillen, F.; Vrachen, L. Lagrangian submanifolds in complex space forms attaining equality in a basic inequality. J. Math. Anal. Appl. 2012, 387, 139–152. [Google Scholar] [CrossRef]
- Chen, B.Y. Geometry of warped product submani folds: A survey. J. Adv. Math. Stud. 2013, 6, 1–43. [Google Scholar]
- Chen, B.Y.; Dillen, F. Optimal general inequalities for Lagrangian submanifolds in complex space forms. J. Math. Anal. Appl. 2011, 379, 229–239. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Dillen, F.; Van der Veken, J.; Vrancken, L. Curvature inequalities for Lagrangian submanifolds: The final solution. Differ. Geom. Appl. 2013, 31, 808–819. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Dillen, F. δ-invariants for Lagrangian submanifolds of complex space forms, in Riemannian Geometry and Applications. In Proceedings of the RIGA 2011, Riga, Latvia, 16–18 February 2011; pp. 75–94. [Google Scholar]
- Chen, B.-Y.; Prieto-Martín, A. Classification of Lagrangian submanifolds in complex space forms satisfying basic equality involving δ(2, 2). Differ. Geom. Appl. 2012, 30, 107–123. [Google Scholar] [CrossRef]
- Tripathi, M.M. Improved Chen–Ricci inequality for curvature-like tensors and its applications. Differ. Geom. Appl. 2011, 29, 685–698. [Google Scholar] [CrossRef]
- Vilcu, G.-E. On Chen invariants and inequalities in quaternionic geometry. J. Inequal. Appl. 2013, 2013, 66. [Google Scholar] [CrossRef]
- Chen, B.-Y. An optimal inequality for CR-warped products in complex space forms involving CRδ-invariant. Int. J. Math. 2012, 23, 3. [Google Scholar] [CrossRef]
- Mustafa, A.; Ozel, C.; Pigazzini, A.; Kaur, R.; Shanker, G. First Chen inequality for general warped product submanifolds of a Riemannian space form and applications. arXiv 2021, arXiv:2109.08911. [Google Scholar] [CrossRef]
- Hasegawa, I.; Mihai, I. Contacts CR-parped product submanifolds in Sasakian manifolds. Geom. Dedicata 2003, 102, 143–150. [Google Scholar] [CrossRef]
- Ali, A.; Laurian-Ioan, P. Geometric classification of warped products isometrically immersed in Sasakian space forms. Math. Nachr. 2018, 292, 234–251. [Google Scholar]
- Ali, A.; Uddin, S.; Othman, W.A.M. Geometry of warped product pointwise semi-slant submanifolds of Kaehler manifolds. Filomat 2017, 32, 3771–3788. [Google Scholar] [CrossRef]
- Ali, A.; Luarian, P. Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions. J. Geom. Phys. 2017, 114, 276–290. [Google Scholar] [CrossRef]
- Ali, A.; Ozel, C. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications. Int. J. Geom. Methods Mod. Phys. 2017, 14, 175002. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike Circ. Surfaces Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singul. Timelike Dev. Surfaces Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Alkhaldi, A.; Ali, A.; Abdel-Baky, R.A.; Saad, M.K. Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-Space. AIMS Math. 2023, 8, 13875–13888. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids Curves Minkowski Plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
- Mihai, I. Contact CR-warped product submanifolds in Sasakian space forms. Geom. Dedicata 2004, 109, 165–173. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Characterizations of PR-Pseudo-Slant Warped Product Submanifold of Para-Kenmotsu Manifold with Slant Base. Symmetry 2022, 14, 1001. [Google Scholar] [CrossRef]
- Chen, B.Y. Differential Geometry of Warped Product Manifolds and Submanifolds; World Scientific: Singapore, 2017. [Google Scholar]
- Sasahara, T. A class of bi-minimal Legendrian submanifolds in Sasakian space forms. Math. Nachr. 2014, 287, 79–90. [Google Scholar] [CrossRef]
- Yano, K.; Kon, M. CR-Submanifolds of Kaehlerian and Sasakian Manifolds; Birkhauser: Boston, MA, USA, 1983. [Google Scholar]
- Yano, Y.; Kon, M. Structures on Manifolds; World Scientific: Singapore, 1984. [Google Scholar]
- Mihai, I.; Presură, I. An improved first Chen inequality for Legendrian submanifolds in Sasakian space forms. Period. Math. Hung. 2017, 74, 220–226. [Google Scholar] [CrossRef]
- Atceken, M. Contact CR-warped product submanifolds in Sasakian space forms. Hacet. J. Math. Stat. 2015, 44, 23–32. [Google Scholar] [CrossRef]
- Berger, M.; Gauduchon, P.; Mazet, E. Le Spectre d’une Variété Riemannienne, Lectures Notes in Mathematics; Springer: Berlin, Germany, 1971; Volume 194. [Google Scholar]
- Chern, S.S. Minimal Submanifold in a Riemannian Manifold; University of Kansas: Lawrence, KS, USA, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, F.A.; Alqahtani, L.S.; Alkhaldi, A.H.; Ali, A. An Invariant of Riemannian Type for Legendrian Warped Product Submanifolds of Sasakian Space Forms. Mathematics 2023, 11, 4718. https://doi.org/10.3390/math11234718
Alghamdi FA, Alqahtani LS, Alkhaldi AH, Ali A. An Invariant of Riemannian Type for Legendrian Warped Product Submanifolds of Sasakian Space Forms. Mathematics. 2023; 11(23):4718. https://doi.org/10.3390/math11234718
Chicago/Turabian StyleAlghamdi, Fatemah Abdullah, Lamia Saeed Alqahtani, Ali H. Alkhaldi, and Akram Ali. 2023. "An Invariant of Riemannian Type for Legendrian Warped Product Submanifolds of Sasakian Space Forms" Mathematics 11, no. 23: 4718. https://doi.org/10.3390/math11234718
APA StyleAlghamdi, F. A., Alqahtani, L. S., Alkhaldi, A. H., & Ali, A. (2023). An Invariant of Riemannian Type for Legendrian Warped Product Submanifolds of Sasakian Space Forms. Mathematics, 11(23), 4718. https://doi.org/10.3390/math11234718