New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations
Abstract
:1. Introduction
2. New US-WENO Lagrangian Scheme
2.1. Two-Dimensional Case
2.1.1. Finite Volume Discretization
2.1.2. Unequal-Sized WENO Reconstruction
2.1.3. The Velocity of Vertex
2.1.4. Time Discretization
2.2. Three-Dimensional Case
2.2.1. Finite Volume Discretization
2.2.2. Unequal-Sized WENO Reconstruction
2.2.3. The Velocity of Vertex
2.2.4. Time Discretization
3. Numerical Results
3.1. Accuracy Test
3.2. Two-Dimensional Lagrangian Tests
3.3. Two-Dimensional ALE Tests
3.4. Three-Dimensional Lagrangian Tests
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Shu, C.-W. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J. Comput. Phys. 2007, 227, 1567–1596. [Google Scholar] [CrossRef]
- Cheng, J.; Shu, C.-W. A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations. Commun. Comput. Phys. 2008, 4, 1008–1024. [Google Scholar]
- Hu, C.; Shu, C.-W. Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 1999, 150, 97–127. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Shu, C.-W. Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 2009, 5, 836–848. [Google Scholar]
- Luo, H.; Baum, J.D.; Löhner, R. On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 2004, 194, 304–328. [Google Scholar] [CrossRef]
- Barlow, A.J.; Maire, P.-H.; Rider, W.J.; Rieben, R.N.; Shashkov, M.J. Arbitrary Lagrangian Eulerian methods for modeling high-speed compressible multimaterial flows. J. Comput. Phys. 2016, 332, 603–665. [Google Scholar] [CrossRef]
- Burton, D.E. Exact Conservation of Energy and Momentum in Staggered-Grid Hydrodynamics with Arbitrary Connectivity, Advances in the Free Lagrange Method; Springer: New York, NY, USA, 1990. [Google Scholar]
- Burton, D.E. Multidimensional Discretization of Conservation Laws for Unstructured Polyhedral Grids; Technical Report UCRL-JC-118306; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1990.
- Caramana, E.J.; Rousculp, C.L.; Burton, D.E. A compatible, energy and symmetry preserving lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry. J. Comput. Phys. 2000, 157, 89–119. [Google Scholar] [CrossRef]
- Caramana, E.J.; Shashkov, M.J.; Whalen, P.P. Formulations of artificial viscosity for multi-dimensional shock wave computations. J. Comput. Phys. 1998, 144, 70–97. [Google Scholar] [CrossRef]
- Loubère, R.; Maire, P.-H.; Vachal, P. 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int. J. Numer. Methods Fluids 2013, 72, 22–42. [Google Scholar] [CrossRef]
- Cheng, J.; Shu, C.-W. Positivity-preserving Lagrangian scheme for multi-material compressible flow. J. Comput. Phys. 2014, 257, 143–168. [Google Scholar] [CrossRef]
- Georges, G.; Breil, J.; Maire, P.-H. A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations. J. Comput. Phys. 2016, 305, 921–941. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, J.; Shu, C.-W. High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 2009, 228, 8872–8891. [Google Scholar] [CrossRef]
- Maire, P.-H. A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry. J. Comput. Phys. 2009, 228, 6882–6915. [Google Scholar] [CrossRef]
- Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 2007, 29, 1781–1824. [Google Scholar] [CrossRef]
- Maire, P.-H.; Breil, J. A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems. Int. J. Numer. Meth. Fluids 2008, 56, 1417–1423. [Google Scholar] [CrossRef]
- Maire, P.-H.; Nkonga, B. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. J. Comput. Phys. 2009, 228, 799–821. [Google Scholar] [CrossRef]
- Xu, X.; Dai, Z.H.; Gao, Z.M. A 3D cell-centered Lagrangian scheme for the ideal magnetohydrodynamics equations on unstructured meshes. Comput. Methods Appl. Mech. Eng. 2018, 342, 490–508. [Google Scholar] [CrossRef]
- Munz, C.D. On Godunov-type schemes for Lagrangian gas dynamics. SIAM J. Numer. Anal. 1994, 31, 17–42. [Google Scholar] [CrossRef]
- Després, B.; Mazeran, C. Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers. Comptes Rendus Méc. 2003, 331, 475–480. [Google Scholar] [CrossRef]
- Després, B.; Mazeran, C. Lagrangian gas dynamics in two-dimensions and Lagrangian systems. Arch. Ration. Mech. Anal. 2005, 178, 327–372. [Google Scholar] [CrossRef]
- Harten, A.; Engquist, B.; Osher, S.; Chakravathy, S. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 1987, 71, 231–303. [Google Scholar] [CrossRef]
- Harten, A.; Osher, S. Uniformly high-order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 1987, 24, 279–309. [Google Scholar] [CrossRef]
- Jiang, G.; Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Liu, X.; Osher, S.; Chan, T. Weighted essentially non-oscillatory schemes. J. Comput. Phys. 1994, 115, 200–212. [Google Scholar] [CrossRef]
- Titarev, V.A.; Toro, E.F. Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 2004, 201, 238–260. [Google Scholar] [CrossRef]
- Boscheri, W.; Balsara, D.S.; Dumbser, M. Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 2014, 267, 112–138. [Google Scholar] [CrossRef]
- Boscheri, W.; Dumbser, M. Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 2013, 14, 1174–1206. [Google Scholar] [CrossRef]
- Boscheri, W.; Dumbser, M. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J. Comput. Phys. 2014, 275, 484–523. [Google Scholar] [CrossRef]
- Boscheri, W.; Dumbser, M.; Balsara, D.S. High order Lagrangian ADER-WENO schemes on unstructured meshes—Application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Methods Fluids 2014, 76, 737–778. [Google Scholar] [CrossRef]
- Dumbser, M. Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 2014, 280, 57–83. [Google Scholar] [CrossRef]
- Dumbser, M.; Käser, M. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 2007, 221, 693–723. [Google Scholar] [CrossRef]
- Dumbser, M.; Käser, M.; Titarev, V.A.; Toro, E.F. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 2007, 226, 204–243. [Google Scholar] [CrossRef]
- Anderson, R.W.; Dobrev, V.A.; Kolev, T.V.; Rieben, R.N.; Tomov, V.Z. High-order multi-material ale hydrodynamics. SIAM J. Sci. Comput. 2018, 40, B32–B58. [Google Scholar] [CrossRef]
- Boscheri, W.; Balsara, D.S. High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes with WENO Adaptive-Order reconstruction on unstructured meshes. J. Comput. Phys. 2019, 398, 108899. [Google Scholar] [CrossRef]
- Dobrev, V.; Kolev, T.; Rieben, R. High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 2012, 34, B606–B641. [Google Scholar] [CrossRef]
- Gaburro, E. A unified framework for the solution of hyperbolic PDE systems using high order direct Arbitrary-Lagrangian-Eulerian schemes on moving unstructured meshes with topology change. Arch. Comput. Methods Eng. 2020, 28, 1–73. [Google Scholar] [CrossRef]
- Gaburro, E.; Boscheri, W.; Chiocchetti, S.; Klingenberg, C.; Springel, V.; Dumbser, M. High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes. J. Comput. Phys. 2020, 407, 109167. [Google Scholar] [CrossRef]
- Lei, N.; Cheng, J.; Shu, C.-W. A high order positivity-preserving conservative WENO remapping method on 2D quadrilateral meshes. Comput. Methods Appl. Mech. Eng. 2021, 373, 113497. [Google Scholar] [CrossRef]
- Lei, N.; Cheng, J.; Shu, C.-W. A high order positivity-preserving conservative WENO remapping method on 3D tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 2022, 395, 115037. [Google Scholar] [CrossRef]
- Pan, L.; Xu, K. An arbitrary-Lagrangian-Eulerian high-order gas-kinetic scheme for three-dimensional computations. J. Sci. Comput. 2021, 88, 1–29. [Google Scholar] [CrossRef]
- Pan, L.; Zhao, F.X.; Xu, K. High-order ALE gas-kinetic scheme with WENO reconstruction. J. Comput. Phys. 2020, 417, 109558. [Google Scholar] [CrossRef]
- Shi, J.; Hu, C.; Shu, C.-W. A technique of treating negative weights in WENO schemes. J. Comput. Phys. 2002, 175, 108–127. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.T. A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 2013, 54, 603–621. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 2016, 318, 110–121. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, J. New finite volume weighted essentially non-oscillatory scheme on triangular meshes. SIAM J. Sci. Comput. 2018, 40, 903–928. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, J. A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. J. Comput. Phys. 2017, 349, 220–232. [Google Scholar] [CrossRef]
- Batten, P.; Leschziner, M.A.; Goldberg, U.C. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J. Comput. Phys. 1997, 137, 38–78. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Shu, C.-W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef]
- Qiu, J.; Shu, C.-W. On the construction, comparison, and local characteristic decomposition for high order central WENO schemes. J. Comput. Phys. 2002, 183, 187–209. [Google Scholar] [CrossRef]
- Sod, G. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 1978, 27, 1–31. [Google Scholar] [CrossRef]
- Lax, P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 1954, 7, 159–193. [Google Scholar] [CrossRef]
- Shu, C.-W.; Osher, S. Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 1989, 83, 32–78. [Google Scholar] [CrossRef]
- Woodward, P.; Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 1984, 54, 115–173. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Dukowicz, J.K.; Meltz, B. Vorticity errors in multidimensional Lagrangian codes. J. Comput. Phys. 1992, 99, 115–134. [Google Scholar] [CrossRef]
- Kamm, J.R.; Timmes, F.X. On Efficient Generation of Numerically Robust Sedov Solutions; Technical Report LA-UR-07-2849; Los Alamos National Laboratory: Los Alamos, NM, USA, 2007.
- Cheng, J.; Shu, C.-W. A high order accurate conservative remapping method on staggered meshes. Appl. Numer. Math. 2008, 58, 1042–1060. [Google Scholar] [CrossRef]
- Tang, H.Z.; Tang, T. Moving mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 2003, 41, 487–515. [Google Scholar] [CrossRef]
- Schulz-Rinne, C.W.; Collins, J.P.; Glaz, H.M. Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 1993, 14, 1394–1414. [Google Scholar] [CrossRef]
- Galera, S.; Maire, P.-H.; Breil, J. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. J. Comput. Phys. 2010, 229, 5755–5787. [Google Scholar] [CrossRef]
- Kucharik, M.; Garimella, R.V.; Schofield, S.P.; Shashkov, M.J. A comparative study of interface reconstruction methods for multi-material ALE simulations. J. Comput. Phys. 2010, 229, 2432–2452. [Google Scholar] [CrossRef]
- Morgan, N.R.; Lipnikov, K.N.; Burton, D.E.; Kenamond, M.A. A Lagrangian staggered grid Godunov-like approach for hydrodynamics. J. Comput. Phys. 2014, 259, 568–597. [Google Scholar] [CrossRef]
Mesh | Error | Order | Error | Order | Error | Order | Error | Order |
---|---|---|---|---|---|---|---|---|
Linear weights (1) | Linear weights (2) | |||||||
4.03 | 1.07 | 4.04 | 1.07 | |||||
6.44 | 2.65 | 1.89 | 2.50 | 6.44 | 2.65 | 1.89 | 2.50 | |
1.98 | 2.91 | 5.93 | 2.86 | 1.98 | 2.91 | 5.93 | 2.86 | |
8.42 | 2.97 | 2.54 | 2.95 | 8.42 | 2.97 | 2.54 | 2.95 | |
4.33 | 2.98 | 1.31 | 2.97 | 4.33 | 2.98 | 1.31 | 2.97 | |
Linear weights (3) | Linear weights (4) | |||||||
4.04 | 1.07 | 4.04 | 1.07 | |||||
6.44 | 2.65 | 1.89 | 2.50 | 6.44 | 2.65 | 1.89 | 2.50 | |
1.98 | 2.91 | 5.93 | 2.86 | 1.98 | 2.91 | 5.93 | 2.86 | |
8.42 | 2.97 | 2.54 | 2.95 | 8.42 | 2.97 | 2.54 | 2.95 | |
4.33 | 2.98 | 1.31 | 2.97 | 4.33 | 2.98 | 1.31 | 2.97 |
Mesh | Error | Order | Error | Order | Error | Order | Error | Order |
---|---|---|---|---|---|---|---|---|
Linear weights (1) | Linear weights (2) | |||||||
8.25 | 1.62 × 10−3 | 8.25 | 1.62 × 10−3 | |||||
8.52 | 3.28 | 1.99 | 3.03 | 8.53 | 3.27 | 2.00 | 3.02 | |
2.38 | 3.15 | 6.03 | 2.94 | 2.38 | 3.15 | 6.03 | 2.96 | |
1.05 | 2.84 | 2.44 | 3.14 | 1.05 | 2.84 | 2.44 | 3.14 | |
5.23 | 3.12 | 1.26 | 2.96 | 5.23 | 3.12 | 1.26 | 2.96 | |
Linear weights (3) | Linear weights (4) | |||||||
8.26 | 1.62 × 10−3 | 8.26 | 1.62 × 10−3 | |||||
8.53 | 3.28 | 2.00 | 3.02 | 8.53 | 3.28 | 2.00 | 3.02 | |
2.38 | 3.15 | 6.03 | 2.96 | 2.38 | 3.15 | 6.03 | 2.96 | |
1.05 | 2.84 | 2.44 | 3.14 | 1.05 | 2.84 | 2.44 | 3.14 | |
5.23 | 3.12 | 1.26 | 2.96 | 5.23 | 3.12 | 1.26 | 2.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Lv, H.; Zhu, J. New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations. Mathematics 2023, 11, 4842. https://doi.org/10.3390/math11234842
Tan Y, Lv H, Zhu J. New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations. Mathematics. 2023; 11(23):4842. https://doi.org/10.3390/math11234842
Chicago/Turabian StyleTan, Yan, Hui Lv, and Jun Zhu. 2023. "New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations" Mathematics 11, no. 23: 4842. https://doi.org/10.3390/math11234842
APA StyleTan, Y., Lv, H., & Zhu, J. (2023). New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations. Mathematics, 11(23), 4842. https://doi.org/10.3390/math11234842