Next Article in Journal
Reduced Clustering Method Based on the Inversion Formula Density Estimation
Previous Article in Journal
Internal Categorical Structures and Their Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities

by
Muhammad Bilal Khan
1,*,
Aleksandr Rakhmangulov
2,*,
Najla Aloraini
3,
Muhammad Aslam Noor
1 and
Mohamed S. Soliman
4
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Logistics and Transportation Systems Management, Nosov Magnitogorsk State Technical University, Magnitogorsk 455000, Russia
3
Department of Mathematics, College of Sciences and Arts Onaizah, Qassim University, P.O. Box 6640, Buraydah 51452, Saudi Arabia
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(3), 656; https://doi.org/10.3390/math11030656
Submission received: 15 December 2022 / Revised: 10 January 2023 / Accepted: 20 January 2023 / Published: 28 January 2023
(This article belongs to the Section Fuzzy Sets, Systems and Decision Making)

Abstract

:
We propose the concept of up and down harmonically convex mapping for fuzzy-number-valued mapping as our main goal in this work. With the help of up and down harmonically fuzzy-number convexity and the fuzzy fractional integral operator, we also show the results for the Hermite–Hadamard ( H H ) inequality, the Fejér type inequality, and some other related versions of inequalities. Moreover, some examples are also presented to discuss the validity of the main results. The results from the new technique show how the suggested scheme is accurate, adaptable, efficient, and user-friendly.

1. Introduction

Fractional calculus [1,2,3,4,5,6,7,8,9,10] is crucial in practically every branch of mathematics and other fields of science. Indeed, it is abundantly obvious that fractional operators have appeared in fractional differential equations as well as in every branch of natural research [11,12,13,14,15,16]. It has been particularly useful in the research of liquid waves, sound transmission, gravitational attraction, and string vibrations. For the study of fractional operators, several significant definitions and ideas such as Riemann, Liouville, Caputo, Hadamard, Katugampola, and Atangana–Baleanu operators have been established. Fractional integral differential equations or inclusions have been developed to determine along with several well-known operators if boundary value problems have solutions [17,18,19,20,21].
Fractional integral inequalities are used in the current situation to successfully and methodically investigate a number of significant fractional derivative and integral operators [22,23,24,25]. Variants are recognized to have numerous significant applications in all directions of mathematics as well as numerous fields of natural science. Numerous types of variations, including those of names such as Jensen, Hermite–Hadamard, Hardy, Ostrowski, Minkowski, and others, are particularly noteworthy and have a remarkable impact on important areas of research. In the mathematical sciences, statistics theory, optimization theory, fixed point theory, and various other branches of science and technology, convexity has attracted increased interest, see [26,27]. A remarkable diversity of convexities has been created by altering convex sets and convex functions over time, including Hp and q-convexity [28,29], harmonic convexity [30], strong convexity [31,32], Schur convexity [33,34], quasi-convexity [35], generalized convexity [36], and others. The convexity hypothesis can be used to find several inequalities in the literature [37]. One of the well-known outstanding classical inequalities, the H H inequality [38] has received a lot of attention recently.
The HH inequality for convex mapping G : K on an interval K = [ d ,   𝔃 ]
G ( d + 𝔃 2 ) 1 𝔃 d d 𝔃 G ( ς ) d ς G ( d ) + G ( 𝔃 ) 2 ,
for all   d ,   𝔃 K .
Both inequalities in (1) hold in the opposite direction if G is concave. The H H inequality (1) has numerous generalizations, modifications, applications, revisions, and variants that can be found in the literature [39].
Fejér derived the weighted version of the H H inequality (1) that is as follows:
Let G : K be a convex mapping on a convex set K and d ,   𝔃 K with d 𝔃 . Then,
G ( d + 𝔃 2 ) 1 d 𝔃 V ( ς ) d ς   d 𝔃 G ( ς ) V ( ς ) d ς G ( d ) + G ( 𝔃 ) 2 d 𝔃 V ( ς ) ) d ς .
If V ( ς ) = 1 , then we obtain (1) from (2).
The modifications for double inequality (2) have received extensive research because of the divergence in convexity concepts. We outline a new scheme and a future strategy within the current framework to address the growing tendency of this study topic. By using the Katugampola fractional integral operator, the p-convex function portrays the concept of the interval-valued function in a dynamic manner while also establishing a number of generalizations. For more information related to interval and fuzzy calculus, see [40,41,42,43,44,45,46].
On the other hand, the theory of interval and fuzzy analysis has a long history that dates to Archimedes’ calculation of the circumference of a circle. Interval analysis spent a long time in obscurity due to the lack of applications in various fields. However, research in this field was not intense until the 1950s. Moore, known for pioneering work in the field of interval arithmetic, wrote the first renowned treatise on interval analysis in 1966 to calculate the error bounds of the numerical solutions of a finite state machine. After his exploration, other scholars focused on examining the literature and applications of interval analysis in automatic error analysis, computer graphics, neural network output optimization, robotics, computational physics, and many other well-known areas in science and technology. Since that time, a number of analysts have focused on and extensively researched interval analysis and interval-valued functions in both mathematics and its applications, see [47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76]. Similarly, most of the authors discussed the applications of real-valued functions, interval-valued functions, and fuzzy-number-valued functions in different fields of mathematics. For more information, see [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105] and the references therein.
This article’s main goal is to introduce the idea of a harmonic convex mapping for fuzzy-number-valued mappings. By harmonic convexity, which correlates with the fuzzy fractional integral operator, we also show the results for the H H inequality, Fejér type inequality, and some other related versions. Finally, the effects of the technique used show the presentations for various current results. The results from this unique technique show that the proposed scheme is very precise, adaptable, practical, and easy to use.

2. Preliminaries

We recall a few definitions, which can be found in the literature and that will be relevant in the follow-up.
Let us consider that X I is the space of all closed and bounded intervals of (set of real numbers), and that C X I is given by:
C = [ C * ,   C * ] = { ς |   C * ς C * } ,   ( C * ,   C * ) .
If C * = C * , then C is degenerate. In the follow-up, all of the intervals are considered non-degenerate. If C * 0 , then C is positive. We denote by X I + = { [ C * ,   C * ] : [ C * ,   C * ] X I   and   C * 0 } the set of all positive intervals.
Let μ and μ C be given by:
μ C = { [ μ C * ,   μ C * ]   if   μ > 0 , { 0 }               if   μ = 0 , [ μ C * , μ C * ]   if   μ < 0 .  
We consider the Minkowski sum, C + O , product, C × O , and difference, O C , for C , O X I , as:
[ O * ,   O * ] + [ C * ,   C * ] = [ O * + C * ,     O * + C * ] ,
[ O * ,   O * ] × [ C * ,   C * ] = [ min { O * C * ,   O * C * ,   O * C * ,   O * C * } ,   max { O * C * ,   O * C * ,   O * C * ,   O * C * } ] ,
[ O * ,   O * ] [ C * ,   C * ] = [ O * C * ,     O * C * ] .
Remark 1.
(i) For given [ O * ,   O * ] ,     [ C * ,   C * ] X I , the relation I defined on X I by
[ C * ,   C * ] I [ O * ,   O * ]   if   and   only   if   C * O * ,     O * C * ,
for all [ O * ,   O * ] , [ C * ,   C * ] X I , is a partial interval inclusion relation. Moreover, [ C * ,   C * ] I [ O * ,   O * ] coincids with [ C * ,   C * ] [ O * ,   O * ] on X I . The relation I is of U D -order [57].
(ii) For given [ O * ,   O * ] , [ C * ,   C * ] X I , the relation I , defined on X I by [ O * ,   O * ] I [ C * ,   C * ] if and only if O * C * , O * C * or O * C * , O * < C * , is a partial interval order relation. Plus, we have that [ O * ,   O * ] I [ C * ,   C * ] coincides with [ O * ,   O * ] [ C * ,   C * ] on X I . The relation I is of left and right (LR) type [56,57].
Given the intervals [ O * ,   O * ] ,     [ C * ,   C * ] X I , their Hausdorff–Pompeiu distance is:
d H ( [ O * ,   O * ] ,   [ C * ,   C * ] ) = max { | O * C * | ,   | O * C * | } .
We have that ( X I , d H ) is a complete metric space [50,54,55].
Definition 1.
Ref. [49] A fuzzy subset L of is a mapping C ˜ : [ 0 , 1 ] , denoted membership mapping of L . We adopt the symbol to represent the set of all fuzzy subsets of .
Let us consider C ˜ . If the following properties hold, then C ˜ is a fuzzy number:
(1)
C ˜ is normal if there exists ς and C ˜ ( ς ) = 1 ;
(2)
C ˜ is upper semi-continuous on if for a ς there exist ε > 0 and δ > 0 yielding C ˜ ( ς ) C ˜ ( 𝓉 ) < ε for all 𝓉 with | ς 𝓉 | < δ ;
(3)
C ˜ is fuzzy convex, meaning that C ˜ ( ( 1 μ ) ς + μ 𝓉 ) min ( C ˜ ( ς ) ,   C ˜ ( 𝓉 ) ) , for all ς , 𝓉 , and 𝓉 [ 0 ,   1 ] ;
(4)
C ˜ is compactly supported, which means that cl { ς |   C ˜ ( ς ) > 0 } is compact.
The symbol I will be adopted to designate the set of all fuzzy numbers of .
Definition 2.
Refs. [49,50] For C ˜ I , the o -level, or o -cut, sets of C ˜ are [ C ˜ ] o = { ς |   C ˜ ( ς ) > o } for all o [ 0 ,   1 ] , and [ C ˜ ] 0 = { ς |   C ˜ ( ς ) > 0 } .
Proposition 1.
Ref. [51] Let C ˜ , O ˜ I . The relation F , defined on I by
C ˜ F O ˜   when   and   only   when   [ C ˜ ] o I [ O ˜ ] o ,   for   every   o [ 0 ,   1 ] ,
is a LR order relation.
Proposition 2.
Ref. [47] Let C ˜ , O ˜ I . The relation F , defined on I by
C ˜ F O ˜   when   and   only   when   [ C ˜ ] o I [ O ˜ ] o ,   for   every   o [ 0 ,   1 ] ,
is an U D -order relation.
Proof: 
The proof relies on the U D -relation I on X I . If C ˜ , O ˜ I and o , then, for every o [ 0 ,   1 ] ,
[ C ˜ O ˜ ] o = [ C ˜ ] o + [ O ˜ ] o ,
[ C ˜ O ˜ ] o = [ C ˜ ] o × [   O ˜ ] o ,
[ μ C ˜ ] o = μ . [ C ˜ ] o ,
result from Equations (4)–(6), respectively. □
Theorem 1. 
Ref. [50] For C ˜ ,   O ˜ I , the supremum metric.
d ( C ˜ ,   O ˜ ) = sup 0 o 1 d H ( [ C ˜ ] o ,   [ O ˜ ] o ) .
is a complete metric space, where H stands for the Hausdorff metric on a space of intervals.
Theorem 2.
Refs. [50,51] If G : [ d , 𝔃 ] X I is an I V satisfying G ( ς ) = [ G * ( ς ) ,   G * ( ς ) ] , then G is Aumann integrable (IA-integrable) over [ d , 𝔃 ] when and only when G * ( ς ) and G * ( ς ) are integrable over [ d , 𝔃 ] , meaning
( I A ) d 𝔃 G ( ς ) d ς = [ d   z G * ( ς ) d ς ,   d 𝔃 G * ( ς ) d ς ]
Definition 3.
Ref. [56] Let G ˜ : I I be a N V . The family of I V s, for every o [ 0 ,   1 ] , is G o : I X I satisfying G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for every ς I . For every o [ 0 ,   1 ] , the lower and upper mappings of G o are the endpoint real-valued mappings G * ( · , o ) ,   G * ( · , o ) : I .
Definition 4.
Ref. [56] Let G ˜ : I I be a N V . Then, G ˜ ( ς ) is continuous at ς I , if for every o [ 0 ,   1 ] ,   G o ( ς ) is continuous when and only when G * ( ς , o ) and G * ( ς , o ) are continuous at ς I .
Definition 5.
Ref. [50] Let G ˜ : I = [ d ,   𝔃 ] I be a N V . The fuzzy Aumann integral ( F A -integral) of G ˜ over [ d ,   𝔃 ] is:
[ ( F A ) d 𝔃 G ˜ ( ς ) d ς ]   o = ( I A ) d 𝔃 G o ( ς ) d ς = { d 𝔃 G ( ς , o ) d ς : G ( ς , o ) S ( G o ) } ,
where S ( G o ) = { G ( . , o ) : G ( . , o )   is   integrable ,   and   G ( ς , o ) G o ( ς ) } ,   for every o [ 0 ,   1 ] . Moreover, G ˜ is ( F A ) -integrable over [ d ,   𝔃 ] if ( F A ) d 𝔃 G ˜ ( ς ) d ς I .
Theorem 3. 
Ref. [51] Let G ˜ : [ d ,   𝔃 ] I be a N V , whose o -levels define the family of I V s G o : [ d ,   𝔃 ] X I satisfying G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for every ς [ d ,   𝔃 ] and o [ 0 ,   1 ] .   G ˜ is ( F A ) -integrable over [ d ,   𝔃 ] when and only when G * ( ς , o ) and G * ( ς , o ) are integrable over [ d ,   𝔃 ] . Moreover, if G ˜ is ( F A ) -integrable over [ d ,   𝔃 ] , then we have:
[ ( F A ) d 𝔃 G ˜ ( ς ) d ς ]   o = [ d 𝔃 G * ( ς , o ) d ς ,   d 𝔃 G * ( ς , o ) d ς ] = ( I A ) d 𝔃 G o ( ς ) d ς ,
for every o [ 0 ,   1 ] .
Definition 6.
Ref. [63] Let β > 0 and L ( [ d ,   𝔃 ] , I ) be the collection of all Lebesgue measurable fuzzy-number-valued mappings on   [ d , 𝔃 ] . Then, the fuzzy left and right Riemann–Liouville fractional integrals of order β > 0 of G   L ( [ d ,   𝔃 ] , I ) are:
d + β   G ˜ ( ς ) = 1 Γ ( β ) d ς ( ς q ) β 1 G ˜ ( q ) d q ,         ( ς > d ) ,
and
𝔃 β G ˜ ( ς ) = 1 Γ ( β ) ς 𝔃 ( q ς ) β 1 G ˜ ( q ) d q ,         ( ς < 𝔃 ) ,
respectively, where Γ ( ς ) = 0 q ς 1 e q d q is the Euler gamma function. The fuzzy left and right RL fractional integrals ς based on left and right end point mappings are:
[ d + β   G ˜ ( ς ) ] o = 1 Γ ( β ) d ς ( ς q ) β 1 G o ( q ) d q   = 1 Γ ( β ) d ς ( ς q ) β 1 [ G * ( q ,   o ) , G * ( q ,   o ) ] d q ,   ( ς > d ) ,
where:
d + β   G * ( ς ,   o ) = 1 Γ ( β ) d ς ( ς q ) β 1 G * ( q ,   o ) d q ,       ( ς > d ) ,
and
d + β   G * ( ς ,   o ) = 1 Γ ( β ) d ς ( ς q ) β 1 G * ( q ,   o ) d q ,     ( ς > d ) .
The Riemann–Liouville fractional integral G ˜ of ς based on left and right end point mappings can be defined in a similar way.
Now we recall some basic classical definitions related of convex real-valued, interval-valued and fuzzy-number-valued mappings.
Definition 7.
Ref. [52] An interval valued mapping G : I = [ d ,   𝔃 ] X I is a convex inteval valued mapping if:
G ( μ ς + ( 1 μ ) 𝓉 ) μ G ( ς ) + ( 1 μ ) G ( 𝓉 ) ,
for all ς ,   𝓉 [ d ,   𝔃 ] ,   μ [ 0 ,   1 ] , where X I is the collection of all real valued intervals. If (24) is reversed, then G is said to be concave.
Definition 8. 
Ref. [48] The F-I∙V∙M  G ˜ : [ d ,   𝔃 ] I is convex on [ d ,   𝔃 ] if:
G ˜ ( μ ς + ( 1 μ ) 𝓉 ) F μ G ˜ ( ς ) ( 1 μ ) G ˜ ( 𝓉 ) ,
For all   ς ,   𝓉 [ d ,   𝔃 ] ,   μ [ 0 ,   1 ] , where G ˜ ( ς ) F 0 ˜ for all ς [ d ,   𝔃 ] . If (25) is reversed, table. Moreover, G ˜ is named affine if and only if it is convex and concave.
Definition 9.
Ref. [57] The F-I∙V∙M  G ˜ : [ d ,   𝔃 ] I is U D -convex on   [ d ,   𝔃 ] if:
G ˜ ( μ ς + ( 1 μ ) 𝓉 ) F μ G ˜ ( ς ) ( 1 μ ) G ˜ ( 𝓉 ) ,
for all   ς ,   𝓉 [ d ,   𝔃 ] ,   μ [ 0 ,   1 ] , where G ˜ ( ς ) F 0 ˜ for all ς [ d ,   𝔃 ] . If (26) is reversed then, G ˜ is U D -concave. Moreover, G ˜ is U D -affine if and only if it is U D -convex and concave.

3. Up and Down Harmonically Convex Fuzzy-Number-Valued Mappings

In the following section, we will introduce new definitions of harmonically convex mappings and related new results with respect to fuzzy-inclusion relation.
Definition 10.
The N V   G ˜ : [ d ,   𝔃 ] F 0 is named as U D -harmonically convex N V on   [ d ,   𝔃 ] if:
G ˜ ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) F ( 1 μ ) G ˜ ( ς ) μ G ˜ ( 𝓉 ) ,
for all   ς ,   𝓉 [ d ,   𝔃 ] ,   μ [ 0 ,   1 ] , where G ˜ ( ς ) F 0 ˜ , for all ς [ d ,   𝔃 ] . If (15) is reversed then, G ˜ is named as U D -harmonically concave N V on [ d ,   𝔃 ] . The set of all U D -harmonically convex ( U D -harmonically concave) N V is denoted by:
U D S X ( [ d ,   𝔃 ] ,   F 0 )       ( U D S V ( [ d ,   𝔃 ] ,   F 0 ) ) .
Theorem 4.
Let [ d ,   𝔃 ] be a harmonically convex set, and let G ˜ : [ d ,   𝔃 ] F 0 be an N V , whose o -cuts define the family of I V s G o : [ d ,   𝔃 ] X I + X I are provided by:
G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] ,     ς [ d ,   𝔃 ] .
for all ς [ d ,   𝔃 ] , o [ 0 ,   1 ] . Then, G ˜ U D S X ( [ d ,   𝔃 ] ,   F 0 ) , if and only if, for all [ 0 ,   1 ] ,   G * ( ς ,   o ) H S X ( [ d ,   𝔃 ] ,   + ) and G * ( ς ,   o ) ( U D S V ( [ d ,   𝔃 ] ,   + ) ) .
Proof. 
Assume that for each o [ 0 ,   1 ] ,   G * ( ς ,   o ) and G * ( ς ,   o ) are harmonically convex on K . Then, from (28), we have:
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
and
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) .
Then, by (28), (12), and (14), we obtain:
G o ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) = [ G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ,   G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ] , I ( 1 μ ) [ G * ( ς ,   o ) ,   G * ( ς ,   o ) ] + μ [ G * ( 𝓉 ,   o ) ,   G * ( 𝓉 ,   o ) ] ,
that is:
G ˜ ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) F ( 1 μ ) G ˜ ( ς ) μ G ˜ ( 𝓉 ) ,   ς , 𝓉 K ,   μ [ 0 ,   1 ] .
Hence, G ˜ is U D -harmonically convex on K .
Conversely, let G ˜ be U D -harmonically convex N V on K . Then, for all ς , 𝓉 K ,   μ [ 0 ,   1 ] , we have:
G ˜ ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) F ( 1 μ ) G ˜ ( ς ) μ G ˜ ( 𝓉 ) .
Therefore, from (28), for each o [ 0 ,   1 ] , left side of above inequality, we have:
G o ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) = [ G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ,   G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ] .
Again, from (28), we obtain:
( 1 μ ) G o ( ς ) + μ G o ( ς ) = ( 1 μ ) [ G * ( ς ,   o ) ,   G * ( ς ,   o ) ] + μ [ G * ( 𝓉 ,   o ) ,   G * ( 𝓉 ,   o ) ] ,
for all ς , 𝓉 K , μ [ 0 ,   1 ] . Then, by U D -harmonically convexity of G ˜ , we have for all ς , 𝓉 K , μ [ 0 ,   1 ]   such that:
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
and
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
for each o [ 0 ,   1 ] . Hence, the result follows. □
Example 1.
We consider the N V s G ˜ : [ 1 2 ,   1 ] F 0 defined by:
G ˜ ( ς ) ( ) = { ς 2 1 ς 2             [ ς 2 ,   1 ] , 5 e ς 4 e ς   ( 1 ,   5 e ς ] ,   0           otherwise .
Then, for each o [ 0 ,   1 ] , we have G o ( ς ) = [ ( 1 o ) ς 2 + o , ( 1 o ) ( 5 e ς ) + o ] . We can easily see that G * ( ς ,   o ) H S X ( [ d ,   𝔃 ] ,   + ) , G * ( ς ,   o ) H S V ( [ d ,   𝔃 ] ,   + ) , for each o [ 0 ,   1 ] . Hence, G ˜ U D S X ( [ d ,   𝔃 ] ,   F 0 ) .
Now that we have the new definitions listed below, we can use them to analyze certain classical and contemporary results as subsets of the primary findings.
Definition 11.
Let G ˜ : [ d , 𝔃 ] I be a F N V M , whose o -cuts define the family of I V s G o : [ d , 𝔃 ] X I + X I are provided by:
G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] ,  
for all ς [ d , 𝔃 ] and for all o [ 0 ,   1 ] . Then, G ˜ is lower U D -harmonically convex (concave) N V on [ d , 𝔃 ] , if and only if:
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
and
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) = ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
for all o [ 0 ,   1 ] .
Definition 12.
Let G ˜ : [ d , 𝔃 ] I be a N V , whose o -cuts define the family of I V s G o : [ d , 𝔃 ] X I + X I are provided by:
G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] ,  
for all ς [ d , 𝔃 ] and for all o [ 0 ,   1 ] . Then, G is upper U D -harmonically convex (concave) N V on [ d , 𝔃 ] , if and only if:
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) = ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
and
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,
for all o [ 0 ,   1 ] .
Remark 2.
(1) Let G * ( ς ,   o ) G * ( ς ,   o ) with o = 1 . Then, U D -harmonically convex (concave) N V reduces to the interval-valued harmonically convex(concave) mapping, see [31].
(2)
Let G ˜ be a lower (upper) U D -harmonically convex (concave) N V . Then, we obtain the definition of harmonically convex (concave) N V , see [64].
(3)
If G * ( ς ,   o ) = G * ( ς ,   o ) with o = 1 , then U D -harmonically convex (concave) N V reduces to the classical harmonically convex(concave) mapping, see [65].
In the next result, we will develop the relation between U D -harmonically convex N V and U D -convex N V . This result will be helpful to prove main results.
Theorem 5.
Let G ˜ : K I be a N V , where for all o [ 0 ,   1 ] , whose o -cuts define the family of I V M s G o : K K I + K I are provided by G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] , for all ς K . Then, G ˜ ( ς ) is U D -harmonically convex N V on K , if and only if, G ˜ ( 1 ς ) is U D -convex N V on K .
Proof. 
Since G ˜ ( ς ) is a U D -harmonically convex N V then, for   ς ,   𝓉 [ d ,   𝔃 ] ,   μ [ 0 ,   1 ] , we have:
G ˜ ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) F ( 1 μ ) G ˜ ( ς ) μ G ˜ ( 𝓉 ) .
Therefore, for each o [ 0 ,   1 ] , we have:
G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) ,   G * ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ,   o ) ( 1 μ ) G * ( ς ,   o ) + μ G * ( 𝓉 ,   o ) .
Consider φ ˜ ( ς ) = G ˜ ( 1 ς ) . Taking q = 1 ς and n = 1 𝓉 to replace ς and 𝓉 , respectively. Then, for each o [ 0 ,   1 ] , applying (33)
G * ( 1 ς 𝓉 μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) = G * ( 1 ( 1 μ ) ς + μ 𝓉 ,   o )                       = φ * ( ( 1 μ ) ς + μ 𝓉 ,   o ) μ G * ( 1 𝓉 ,   o ) + ( 1 μ ) G * ( 1 ς ,   o )     = μ φ * ( 𝓉 ,   o ) + ( 1 μ ) φ * ( ς ,   o ) ,   G * ( 1 ς 𝓉 μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) = G * ( 1 ( 1 μ ) ς + μ 𝓉 ,   o )     = φ * ( ( 1 μ ) ς + μ 𝓉 ,   o )           μ G * ( 1 𝓉 ,   o ) + ( 1 μ ) G * ( 1 ς ,   o )     = μ φ * ( 𝓉 ,   o ) + ( 1 μ ) φ * ( ς ,   o ) .
It follows that:
[ G * ( 1 ς 𝓉 μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) ,   G * ( 1 ς 𝓉 μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) ]         = [ φ * ( ( 1 μ ) ς + μ 𝓉 ,   o ) ,   φ * ( ( 1 μ ) ς + μ 𝓉 ,   o ) ]                     I μ [ φ * ( 𝓉 ,   o ) ,   φ * ( 𝓉 ,   o ) ] + ( 1 μ ) [ φ * ( ς ,   o ) ,   φ * ( ς ,   o ) ] .
which implies that:
φ o ( ( 1 μ ) ς + μ 𝓉 ) I μ φ o ( 𝓉 ) + ( 1 μ ) φ o ( ς ) ,
that is:
φ ˜ ( ( 1 μ ) ς + μ 𝓉   ) F μ φ ˜ ( 𝓉 ) ( 1 μ ) φ ˜ ( ς ) .
This concludes that φ ˜ ( ς ) is a convex N V .
Conversely, let φ ˜ is convex N V on K . Then, for all ς , 𝓉 K , μ [ 0 ,   1 ] , we have:
φ ˜ ( μ ς + ( 1 μ ) 𝓉 ) F μ φ ˜ ( ς ) ( 1 μ ) φ ˜ ( 𝓉 ) .
By using the same steps as above, for each o [ 0 ,   1 ] , we have:
φ * ( μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) = G * ( 1 μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) = G * ( ς 𝓉 ( 1 μ ) ς + μ 𝓉 ,   o ) μ φ * ( 1 ς ,   o ) + ( 1 μ ) φ * ( 1 𝓉 ,   o ) = μ G * ( ς ,   o ) + ( 1 μ ) G * ( 𝓉 ,   o ) φ * ( μ 1 ς + ( 1 μ ) 1 𝓉 ,   o ) = G * ( 1 μ 1 ς + ( 1 μ ) 1 𝓉 ,   o )           = G * ( ς 𝓉 ( 1 μ ) ς + μ 𝓉 ,   o )           μ φ * ( 1 ς ,   o ) + ( 1 μ ) φ * ( 1 𝓉 ,   o )     = μ G * ( ς ,   o ) + ( 1 μ ) G * ( 𝓉 ,   o ) .
It follows that:
G o ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) I ( 1 μ ) G o ( ς ) + μ G o ( 𝓉 ) ,
that is:
G ˜ ( ς 𝓉 μ ς + ( 1 μ ) 𝓉 ) F ( 1 μ ) G ˜ ( ς ) μ G ˜ ( 𝓉 ) ,
the proof the theorem has been completed. □
Remark 3.
If G * ( ς , o ) = G * ( ς , o ) and o = 1 then from Theorem 5, we obtain Lemma 2.1 of [66].

4. Fuzzy-Interval Fractional Hermite–Hadamard Inequalities

In this section, we will propose new versions of Hermite–Hadamard-type Inequalities for U D -harmonically convex ( U D -harmonically concave) N V . Moreover, some exceptional new and classical cases are also discussed.
Theorem 6.
Let G ˜ : [ d ,   𝔃 ] I be a U D -harmonically convex N V on [ d ,   𝔃 ] , whose o -cuts define the family of I V s G o : [ d ,   𝔃 ] K I + are provided by G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for all ς [ d ,   𝔃 ] , o [ 0 ,   1 ] . If G ˜ L ( [ d ,   𝔃 ] , 𝔃 I ) , then
G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( G ˜ ψ ) ( 1 𝔃 ) 1 𝔃 + β   ( G ˜ ψ ) ( 1 d ) ] F G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
If G ˜ ( ς ) is concave N V , then
G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β   ( G ˜ ψ ) ( 1 𝔃 ) 1 𝔃 + β   ( G ˜ ψ ) ( 1 d ) ] F G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
where ψ ( ς ) = 1 ς .
Proof. 
Let G ˜ : [ d ,   𝔃 ] I be U D -harmonically convex N V . Then, by hypothesis, we have:
2 G ˜ ( 2 d 𝔃 d + 𝔃 ) F G ˜ ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) G ˜ ( d 𝔃 ( 1 μ ) d + μ 𝔃 ) .
Therefore, for each o [ 0 ,   1 ] , we have:
2 G * ( 2 d 𝔃 d + 𝔃 ,   o ) G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) + G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) ,     2 G * ( 2 d 𝔃 d + 𝔃 ,   o ) G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) + G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 , o ) .
Consider φ ˜ ( ς ) = G ˜ ( 1 ς ) . By Theorem 5, we have φ ˜ ( ς ) which is convex N V , then for each o [ 0 ,   1 ] , the above inequality, we have:
2 φ * ( d + 𝔃 2 d 𝔃 ,   o ) φ * ( μ d + ( 1 μ ) 𝔃 d 𝔃 ,   o ) + φ * ( ( 1 μ ) d + μ 𝔃 d 𝔃 ,   o ) .    
Multiplying both sides by μ β 1 and integrating the obtained result with respect to μ over ( 0 , 1 ) , we have:
2 0 1 μ β 1 φ * ( d + 𝔃 2 d 𝔃 ,   o ) d μ   0 1 μ β 1 φ * ( μ d + ( 1 μ ) 𝔃 d 𝔃 , o ) d μ + 0 1 μ β 1 φ * ( ( 1 μ ) d + μ 𝔃 d 𝔃 ,   o ) d μ .
Let ς = ( 1 μ ) d + μ 𝔃 d 𝔃 and 𝓉 = μ d + ( 1 μ ) 𝔃 d 𝔃 . Then, we have:
2 β φ * ( d + 𝔃 2 d 𝔃 ,   o ) ( d 𝔃 𝔃 d ) β 1 𝔃 1 d ( 1 d 𝓉 ) β 1 φ * ( 𝓉 , o ) d 𝓉 + ( d 𝔃 𝔃 d ) β 1 𝔃 1 d ( ς 1 𝔃 ) β 1 φ * ( ς , o ) d ς = Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 d ) β   φ * ( 1 𝔃 ,   o ) + ( 1 𝔃 ) + β   φ * ( 1 d ,   o ) ] .  
Similarly, for G * ( ς , o ) , we have:
2 β φ * ( d + 𝔃 2 d 𝔃 ,   o ) Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 d ) β   φ * ( 1 𝔃 ,   o ) + ( 1 𝔃 ) + β   φ * ( 1 d ,   o ) ] .
It follows that:
2 [ φ * ( d + 𝔃 2 d 𝔃 ,   o ) ,   φ * ( d + 𝔃 2 d 𝔃 ,   o ) ]   I Γ ( β + 1 ) ( d 𝔃 𝔃 d ) β [ ( 1 d ) β   φ * ( 1 𝔃 ,   o ) + ( 1 𝔃 ) + β   φ * ( 1 d ,   o ) ,   ( 1 d ) β   φ * ( 1 𝔃 ,   o ) + ( 1 𝔃 ) + β   φ * ( 1 d ,   o ) ] .
That is,
2 φ ˜ ( d + 𝔃 2 d 𝔃 ) F Γ ( β + 1 ) ( d 𝔃 𝔃 d ) β [ ( 1 d ) β φ ˜ ( 1 𝔃 )   ( 1 𝔃 ) + β φ ˜ ( 1 d ) ] .
In a similar way as above, we have:
Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 d ) β   φ ˜ ( 1 𝔃 )   ( 1 𝔃 ) + β   φ ˜ ( 1 d ) ] F φ ˜ ( 1 d ) φ ˜ ( 1 𝔃 ) β .
Combining (36) and (37), we have:
φ ˜ ( d + 𝔃 2 d 𝔃 ) F Γ ( β + 1 )   ( d 𝔃 𝔃 d ) β 2 [ ( 1 d ) β   φ ˜ ( 1 𝔃 )   ( 1 𝔃 ) + β   φ ˜ ( 1 d ) ] F φ ˜ ( 1 d ) φ ˜ ( 1 𝔃 ) 2 .
that is:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( G ˜ ψ ) ( 1 𝔃 ) 1 𝔃 + β   ( G ˜ ψ ) ( 1 d ) ] F G ˜ ( d ) G ˜ ( 𝔃 ) 2
Hence, the required result. □
Remark 4.
(1) If β = 1 , then inequality (34) reduces to the following inequality which is also new one:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F   d z 𝔃 d d 𝔃 G ˜ ( ς ) ς 2 d ς F   G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
(2)
If β = 1 , then inequality (34) reduces to the following inequality which is also new one:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F   d z 𝔃 d d 𝔃 G ˜ ( ς ) ς 2 d ς F   G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
(3)
If G ˜ is lower U D -harmonically convex N V , then inequality (34) reduces to the following inequality, see [64]:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( G ˜ ψ ) ( 1 𝔃 ) + 1 𝔃 + β   ( G ˜ ψ ) ( 1 d ) ] F G ˜ ( d ) + G ˜ ( 𝔃 ) 2 .
(4)
If G ˜ is lower U D -harmonically convex N V and β = 1 , then inequality (34) reduces to the following inequality, see [64]:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F   d z 𝔃 d d 𝔃 G ˜ ( ς ) ς 2 d ς F   G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
(5)
If G ˜ is lower U D -harmonically convex N V and β = 1 , then inequality (34) reduces to the following inequality, see [64]:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F   d z 𝔃 d d 𝔃 G ˜ ( ς ) ς 2 d ς F   G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
(6)
If G * ( ς , o ) = G * ( ς , o ) with o = 1 then, we obtain classical fractional 𝐻–𝐻 inequality for harmonically convex function which is given in [66]:
G ( 2 d 𝔃 d + 𝔃 ) Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( G ψ ) ( 1 𝔃 ) + 1 𝔃 + β   ( G ψ ) ( 1 d ) ] G ( d ) + G ( 𝔃 ) 2 .
(7)
If G * ( ς , o ) = G * ( ς , o ) with o = 1 and β = 1 , then we obtain classical 𝐻–𝐻 inequality for harmonically convex function which is given in [65].
G ( 2 d 𝔃 d + 𝔃 ) d 𝔃 𝔃 d   d 𝔃 G ( ς ) ς 2 d ς G ( d ) + G ( 𝔃 ) 2 .
Example 2.
We consider β = 1 , and the N V s G ˜ : [ 1 2 ,   1 ] F 0 , as in Example 1. Then, for each ɷ [ 0 ,   1 ] , we have G ɷ ( ς ) = [ ( 1 ɷ ) ς 2 + ɷ , ( 1 ɷ ) ( 5 e ς ) + ɷ ] is UD-harmonically convex N V . Since G * ( ς , ɷ ) = ( 1 ɷ ) ς 2 + ɷ ,   G * ( ς ,   ɷ ) = ( 1 ɷ ) ( 5 e ς ) + ɷ . We now compute the following:
G * ( 2 d 𝔃 d + 𝔃 ,   ɷ ) Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( ( G * ψ ) ( 1 𝔃 ) ,   ɷ ) + 1 𝔃 + β ( ( G * ψ ) ( 1 d ) ,   ɷ ) ] G * ( d ,   ɷ ) + G * ( 𝔃 ,   ɷ ) 2 .
G * ( 2 d 𝔃 d + 𝔃 ,   ɷ ) = G * ( 2 3 ,   ɷ ) = 4 9 ( 1 ɷ ) + ɷ ,
Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( ( G * ψ ) ( 1 𝔃 ) ,   ɷ ) + 1 𝔃 + β ( ( G * ψ ) ( 1 d ) ,   ɷ ) ] = 1 2 ( 1 + ɷ ) ,  
G * ( d ,   ɷ ) + G * ( 𝔃 ,   ɷ ) 2 = 5 + 3 ɷ 4 ,
for all ɷ [ 0 ,   1 ] . That means:
4 9 ( 1 ɷ ) + ɷ 1 2 ( 1 + ɷ ) 5 + 3 ɷ 4 .
Similarly, it can be easily show that:
G * ( 2 d 𝔃 d + 𝔃 ,   ɷ ) Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( ( G * ψ ) ( 1 𝔃 ) ,   ɷ ) + 1 𝔃 + β ( ( G * ψ ) ( 1 d ) ,   ɷ ) ] G * ( d ,   ɷ ) + G * ( 𝔃 ,   ɷ ) 2
for all ɷ [ 0 ,   1 ] , such that:
  G * ( 2 d 𝔃 d + 𝔃 ,   ɷ ) = G * ( 2 3 ,   ɷ ) = ( 1 ɷ ) ( 5 e 2 3 ) + ɷ ,
Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( ( G * ψ ) ( 1 𝔃 ) ,   ɷ ) + 1 𝔃 + β ( ( G * ψ ) ( 1 d ) ,   ɷ ) ] 3 2 ɷ ,  
G * ( d ,   ɷ ) + G * ( 𝔃 ,   ɷ ) 2 = ( 5 e ) ( 1 ɷ ) + ( 5 e 1 2 ) ( 1 ɷ ) + 2 ɷ 2 .
From which, we have:
( 1 ɷ ) ( 5 e 2 3 ) + ɷ 3 2 ɷ ( 5 e ) ( 1 ɷ ) + ( 5 e 1 2 ) ( 1 ɷ ) + 2 ɷ 2 ,
that is:
[ 4 9 ( 1 ɷ ) + ɷ ,   ( 1 ɷ ) ( 5 e 2 3 ) + ɷ ] I [ 1 2 ( 1 + ɷ ) ,   3 2 ɷ ]                                             I [ 5 + 3 ɷ 4 ,   ( 5 e ) ( 1 ɷ ) + ( 5 e 1 2 ) ( 1 ɷ ) + 2 ɷ 2 ] ,
for all ɷ [ 0 ,   1 ] .
Hence,
G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 ( 𝔃 d ) β [ 1 d β ( G ˜ ψ ) ( 1 𝔃 ) 1 𝔃 + β ( G ˜ ψ ) ( 1 d ) ] F G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
In next outcome, we will present new fuzzy fractional H H   Fejér inequality for U D -harmonically convex N V .
Theorem 7.
Let G ˜ : [ d ,   𝔃 ] I be a U D -harmonically convex N V with d < 𝔃 , whose o -cuts define the family of I V s G o : [ d ,   𝔃 ] K I + are provided by G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for all ς [ d ,   𝔃 ] , o [ 0 ,   1 ] . If G ˜ L ( [ d ,   𝔃 ] , I ) and V : [ d ,   𝔃 ] ,     V ( 1 1 d + 1 𝔃 1 ς ) = V ( ς ) 0 , then:
G ˜ ( 2 d 𝔃 d + 𝔃 ) [ ( 1 𝔃 ) + β ( V ψ ) ( 1 d ) + ( 1 d ) β ( V ψ ) ( 1 𝔃 ) ] F [ ( 1 𝔃 ) + β ( G ˜ V ψ ) ( 1 d ) ( 1 d ) β ( G ˜ V ψ ) ( 1 𝔃 ) ]   F G ˜ ( d ) G ˜ ( 𝔃 ) 2 [ 1 𝔃 + β   ( V ψ ) ( 1 d ) + 1 d β ( V ψ ) ( 1 𝔃 ) ] .
If G ˜ is concave N V , then inequality (45) is reversed.
Proof. 
Since G ˜ is a U D -harmonically convex N V , then for o [ 0 ,   1 ] , we have:
    G * ( 2 d 𝔃 d + 𝔃 ,   o )                                                                           1 2 ( G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) + G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) ) .
Multiplying both sides by (46) by μ β 1 V ( d 𝔃 ( 1 μ ) d + μ 𝔃 ) and then integrating the resultant with respect to μ over [ 0 ,   1 ] , we obtain:
G * 2 d 𝔃 d + 𝔃 ,   o 0 1 μ β 1 V d 𝔃 1 μ d + μ 𝔃 d μ       1 2 0 1 μ β 1 G * d 𝔃 μ d + 1 μ 𝔃 ,   o V d 𝔃 1 μ d + μ 𝔃 d μ + 0 1 μ β 1 G * d 𝔃 1 μ d + μ 𝔃 ,   o V d 𝔃 1 μ d + μ 𝔃 d μ .
Let ς = d 𝔃 μ d + ( 1 μ ) 𝔃 . Then, we have:
2 ( d 𝔃 𝔃 d ) β G * ( 2 d 𝔃 d + 𝔃 ,   o ) 1 𝔃 1 d ( ς 1 𝔃 ) β 1 V ( 1 ς , o ) d ς     ( d 𝔃 𝔃 d ) β   1 𝔃 1 d ( ς 1 𝔃 ) β 1 G * ( 1 1 d + 1 𝔃 1 ς , o ) V ( 1 ς ) d ς + ( d 𝔃 𝔃 d ) β   d 1 d ( ς 1 𝔃 ) β 1 G * ( 1 ς , o ) V ( 1 ς ) d ς   = ( d 𝔃 𝔃 d ) β   1 𝔃 1 d ( 1 d ς ) β 1 G * ( ς , o ) V ( 1 1 d + 1 𝔃 1 ς ) d ς + ( d 𝔃 𝔃 d ) β   1 𝔃 1 d ( ς 1 𝔃 ) β 1 G * ( 1 ς , o ) V ( 1 ς ) d ς = Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G * V ( 1 d ) + ( 1 d ) β   G * V ( 1 𝔃 ) ] ,
Similarly, for G * ( ς , o ) , we have:
2 ( d 𝔃 𝔃 d ) β G * ( 2 d 𝔃 d + 𝔃 ,   o ) 1 𝔃 1 d ( ς 1 𝔃 ) β 1 V ( 1 ς , o ) d ς Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G * V ( 1 d ) + ( 1 d ) β   G * V ( 1 𝔃 ) ] .
From (48) and (49), we have:
Γ ( β ) ( d 𝔃 𝔃 d ) β [ G * ( 2 d 𝔃 d + 𝔃 ,   o ) ,     G * ( 2 d 𝔃 d + 𝔃 ,   o ) ] . [ ( 1 𝔃 ) + β   V ( 1 d ) + ( 1 d ) β   V ( 1 𝔃 ) ] I Γ ( β ) ( d 𝔃 𝔃 d ) β [   ( 1 𝔃 ) + β   G * V ( 1 d ) + ( 1 d ) β   G * V ( 1 𝔃 ) ,         ( 1 𝔃 ) + β   G * V ( 1 d ) + ( 1 d ) β   G * V ( 1 𝔃 ) ] ,
that is:
G ˜ ( 2 d 𝔃 d + 𝔃 ) [ ( 1 𝔃 ) + β   ( V ψ ) ( 1 d ) ( 1 d ) β ( V ψ ) ( 1 𝔃 ) ] F [ ( 1 𝔃 ) + β   ( G ˜ V ψ ) ( 1 d ) ( 1 d ) β   ( G ˜ V ψ ) ( 1 𝔃 ) ] .
Similarly, if G ˜ is a U D -harmonically convex N V , and μ β 1 V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) 0 , then, for each o [ 0 , 1 ] we have:
    μ β 1 G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) V ( d 𝔃 μ d + ( 1 μ ) 𝔃 )                                                                           μ β 1 ( ( 1 μ ) G * ( d ,   o ) + μ G * ( 𝔃 ,   o ) ) V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) ,
and
                                μ β 1 G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) V ( d 𝔃 μ d + ( 1 μ ) 𝔃 )                                                                               μ β 1 ( μ G * ( d ,   o ) + ( 1 μ ) G * ( 𝔃 ,   o ) ) V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) .
After adding (51) and (52), and integrating the resultant over [ 0 ,   1 ] , we obtain:
  0 1 μ β 1 G * d 𝔃 μ d + 1 μ 𝔃 ,   o V d 𝔃 μ d + 1 μ 𝔃 d μ                                                 + 0 1 μ β 1 G * d 𝔃 1 μ d + μ 𝔃 ,   o V d 𝔃 μ d + 1 μ 𝔃 d μ     0 1 μ β 1 G * d ,   o μ + 1 μ d 𝔃 μ d + 1 μ 𝔃 + μ β 1 G * 𝔃 ,   o 1 μ + μ d 𝔃 μ d + 1 μ 𝔃 d μ , = G * ( d ,   o ) 0 1 μ β 1 V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) d μ           + G * ( 𝔃 ,   o ) 0 1 μ β 1 V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) d μ .
Similarly, for G * ( ς , o ) , we have:
  0 1 μ β 1 G * d 𝔃 μ d + 1 μ 𝔃 ,   o V d 𝔃 μ d + 1 μ 𝔃 d μ                                                           + 0 1 μ β 1 G * d 𝔃 1 μ d + μ 𝔃 ,   o V d 𝔃 μ d + 1 μ 𝔃 d μ               G * ( d ,   o ) 0 1 μ β 1 V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) d μ           + G * ( 𝔃 ,   o ) 0 1 μ β 1 V ( d 𝔃 μ d + ( 1 μ ) 𝔃 ) d μ .
From which, we have:
Γ ( β ) ( d 𝔃 𝔃 d ) β [ 1 𝔃 + β   G o V ψ ( 𝔃 ) + ( 1 d ) β   G o V ψ ( 1 𝔃 ) ]   I Γ ( β ) ( d 𝔃 𝔃 d ) β G o ( d ) + G o ( 𝔃 ) 2 [ 1 𝔃 + β   ( V ψ ) ( 1 d ) + ( 1 d ) β ( V ψ ) ( 1 𝔃 ) ] ,
that is:
[ ( 1 𝔃 ) + β G ˜ V ψ ( 1 d ) ( 1 d ) β G ˜ V ψ ( 1 𝔃 ) ] F G ˜ ( d ) G ˜ ( 𝔃 ) 2 [ ( 1 𝔃 ) + β ( V ψ ) ( 1 d ) + ( 1 d ) β ( V ψ ) ( 1 𝔃 ) ] .
By combining (52) and (53), we obtain the required inequality (45). □
Remark 5.
(1) Let β = 1 . Then, from Theorem 7, we acquire 𝐻–𝐻 inequality for U D -harmonically convex N V , which is also a new one:
G ˜ ( 2 d 𝔃 d + 𝔃 ) d 𝔃 V ( ς ) ς 2 d ς F   d 𝔃 G ˜ ( ς ) ς 2 V ( ς ) d ς F G ˜ ( d )     G ˜ ( 𝔃 ) 2 d 𝔃 V ( ς ) ς 2 d ς
(2)
Let V ( ς ) = 1 . Then, from Theorem 7, we achieve inequality (34)
(3)
Let V ( ς ) = 1 and β = 1 , then from Theorem 7, we obtain 𝐻–𝐻 inequality for U D -harmonically convex N V :
G ˜ ( 2 d 𝔃 d + 𝔃 ) F d 𝔃 𝔃 d d 𝔃 G ˜ ( ς ) ς 2 d ς F G ˜ ( d ) G ˜ ( 𝔃 ) 2
(4)
Let G ˜ be lower U D -harmonically convex N V . Then, we obtain the following inequality, see [64]:
G ˜ ( 2 d 𝔃 d + 𝔃 ) [ ( 1 𝔃 ) + β   ( V ψ ) ( 1 d ) + ( 1 d ) β ( V ψ ) ( 1 𝔃 ) ] F [ ( 1 𝔃 ) + β   ( G ˜ V ψ ) ( 1 d ) ( 1 d ) β   ( G ˜ V ψ ) ( 1 𝔃 ) ]             F G ˜ ( d ) G ˜ ( 𝔃 ) 2 [ 1 𝔃 + β   ( V ψ ) ( 1 d ) + 1 d β ( V ψ ) ( 1 𝔃 ) ] .
(5)
Let lower U D -harmonically convex N V and β = 1 . Then, from Theorem 7, we acquire 𝐻–𝐻 inequality for harmonically convex N V , see [64]:
G ˜ ( 2 d 𝔃 d + 𝔃 ) d 𝔃 V ( ς ) ς 2 d ς F   d 𝔃 G ˜ ( ς ) ς 2 V ( ς ) d ς F G ˜ ( d ) G ˜ ( 𝔃 ) 2 d 𝔃 V ( ς ) ς 2 d ς .
(6)
Let lower U D -harmonically convex N V and, V ( ς ) = 1 , β = 1 , then, from Theorem 7, we acquire 𝐻–𝐻 inequality for harmonically convex N V see [64]:
G ˜ ( 2 d 𝔃 d + 𝔃 ) F d 𝔃 𝔃 d   d 𝔃 G ˜ ( ς ) ς 2 d ς F G ˜ ( d ) G ˜ ( 𝔃 ) 2 .
(7)
If G * ( ς , o ) = G * ( ς , o ) with o = 1 then from Theorem 7, we achieve classical fractional 𝐻–𝐻–Fejér inequality for harmonically convex function, given in [66].
(8)
Let G * ( ς , o ) = G * ( ς , o ) with o = 1 and β = 1 . Then, from Theorem 7, in our case classical 𝐻–𝐻–Fejér inequality for harmonically convex function, given in [66].
(9)
If G * ( ς , o ) = G * ( ς , o ) with V ( ς ) = o = 1 then from Theorem 7, in our case classical fractional 𝐻–𝐻 inequality for harmonically convex function, see [65].
(10)
If G * ( ς , o ) = G * ( ς , o ) and V ( ς ) = o = β = 1 then from Theorem 7, in our case classical 𝐻–𝐻 inequality for harmonically convex function, [65].
In next two outcomes, we will prove fuzzy fractional H H inequality for the product of two U D -harmonically convex N V . These types of inequalities are known as Pachpatte-type inequalities.
Theorem 8.
Let G ˜ , G ˜   : [ d ,   𝔃 ] I be two U D -harmonically convex N V s on [ d ,   𝔃 ]   , whose o -cuts G o ,     G o : [ d ,   𝔃 ] K I + are characterized by G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] and G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for all ς [ d ,   𝔃 ] , o [ 0 ,   1 ] . If G ˜ G ˜   L ( [ d ,   𝔃 ] , I ) , then:
Γ ( β + 1 ) 2 ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G ˜ ψ ( 1 d ) G ˜ ψ ( 1 d ) ( 1 d ) β G ˜ ψ ( 1 𝔃 ) G ˜ ψ ( 1 𝔃 ) ] F ( 1 2 β ( β + 1 ) ( β + 2 ) ) P ˜ ( d , 𝔃 ) ( β ( β + 1 ) ( β + 2 ) ) F ˜ ( d , 𝔃 ) .
where P ˜ ( d , 𝔃 ) = G ˜ ( d ) G ˜ ( d ) G ˜ ( 𝔃 ) G ˜ ( 𝔃 ) ,   F ˜ ( d , 𝔃 ) = G ˜ ( d ) G ˜ ( 𝔃 ) G ˜ ( 𝔃 ) G ˜ ( d ) , and P o ( d , 𝔃 ) = [ P * ( ( d , 𝔃 ) ,   o ) ,   P * ( ( d , 𝔃 ) ,   o ) ] and F o ( d , 𝔃 ) = [ F * ( ( d , 𝔃 ) ,   o ) ,   F * ( ( d , 𝔃 ) ,   o ) ] .
Proof. 
Since G ˜ ,   G ˜ both are U D -harmonically convex N V s, then for each o [ 0 ,   1 ] , we have:
    G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) ( 1 μ ) G * ( d , o ) + μ G * ( 𝔃 ,   o ) ,
and
    G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) ( 1 μ ) G * ( d , o ) + μ G * ( 𝔃 ,   o ) .
From the definition of U D -harmonically convex N V s, it follows that 0 ˜ F G ˜ ( ς ) and 0 ˜ F G ˜ ( ς ) , so:
G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) × G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) ( ( 1 μ ) G * ( d , o ) + μ G * ( 𝔃 ,   o ) ) ( ( 1 μ ) G * ( d , o ) + μ G * ( 𝔃 ,   o ) ) = ( 1 μ ) 2 G * ( d , o ) × G * ( d , o ) + μ 2 G * ( 𝔃 ,   o ) × G * ( 𝔃 ,   o ) + μ ( 1 μ ) G * ( d , o ) × G * ( 𝔃 ,   o ) + μ ( 1 μ ) G * ( 𝔃 ,   o ) × G * ( d , o ) .
Analogously, we have:
G * d 𝔃 1 μ d + μ 𝔃 ,   o G * d 𝔃 1 μ d + μ 𝔃 ,   o                     μ 2 G * d , o × G * d , o           + 1 μ 2 G * 𝔃 ,   o × G * 𝔃 ,   o                   + μ 1 μ G * d , o × G * 𝔃 ,   o               + μ 1 μ G * 𝔃 ,   o × G * d , o .
Adding (60) and (61), we have:
G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o           + G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o                   μ 2 + 1 μ 2 G * d , o × G * d , o + G * 𝔃 ,   o × G * 𝔃 ,   o + 2 μ 1 μ G * 𝔃 ,   o × G * d , o + G * d , o × G * 𝔃 ,   o .
Taking multiplication of (62) by μ β 1 and integrating the obtained result with respect to μ over (0, 1), we have:
0 1 μ β 1 G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o d μ       + 0 1 μ β 1 G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o d μ             P * d , 𝔃 ,   o 0 1 μ β 1 μ 2 + 1 μ 2 d μ + 2 F * d , 𝔃 ,   o 0 1 μ β 1 μ 1 μ d μ .
It follows that:
    Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G * ( 1 d ,   o ) × G * ( 1 d ,   o ) + ( 1 d ) β   G * ( 1 𝔃 , o ) × G * ( 1 𝔃 , o ) ]                 2 β ( 1 2 β ( β + 1 ) ( β + 2 ) ) P * ( ( d , 𝔃 ) ,   o ) + 2 β ( β ( β + 1 ) ( β + 2 ) ) F * ( ( d , 𝔃 ) ,   o ) .
Similarly, for G * ( ς , o ) , we have:
Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β G * ( 1 d ,   o ) × G * ( 1 d ,   o ) + ( 1 d ) β G * ( 1 𝔃 , o ) × G * ( 1 𝔃 , o ) ] 2 β ( 1 2 β ( β + 1 ) ( β + 2 ) ) P * ( ( d , 𝔃 ) ,   o ) + 2 β ( β ( β + 1 ) ( β + 2 ) ) F * ( ( d , 𝔃 ) ,   o ) ,
that is:
Γ ( β ) ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β G * ( 1 d ,   o ) × G * ( 1 d ,   o ) + ( 1 d ) β G * ( 1 𝔃 , o ) × G * ( 1 𝔃 , o ) ,   ( 1 𝔃 ) + β G * ( 1 d ,   o ) × G * ( 1 d ,   o ) + ( 1 d ) β G * ( 1 𝔃 , o ) × G * ( 1 𝔃 ,   o ) ] I 2 β ( 1 2 β ( β + 1 ) ( β + 2 ) ) [ P * ( ( d , 𝔃 ) ,   o ) ,   P * ( ( d , 𝔃 ) ,   o ) ] + 2 β ( β ( β + 1 ) ( β + 2 ) ) [ F * ( ( d , 𝔃 ) ,   o ) ,   F * ( ( d , 𝔃 ) ,   o ) ] .
Thus,
Γ ( β + 1 ) 2 ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G ˜ ψ ( 1 d ) G ˜ ψ ( 1 d ) ( 1 d ) β G ˜ ψ ( 1 𝔃 ) G ˜ ψ ( 1 𝔃 ) ]   F ( 1 2 β ( β + 1 ) ( β + 2 ) ) P ˜ ( d , 𝔃 ) ( β ( β + 1 ) ( β + 2 ) ) F ˜ ( d , 𝔃 ) .
and the theorem has been established. □
Theorem 9.
Let G ˜ ,     G ˜   : [ d ,   𝔃 ] I be two U D -harmonically convex N V s, whose o -cuts define the family of I V s G o ,     G o : [ d ,   𝔃 ] K I + are provided by G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] and G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for all ς [ d ,   𝔃 ] , o [ 0 ,   1 ] . If G ˜ × ˜ G ˜ L ( [ d ,   𝔃 ] , I ) , then:
G ˜ ( 2 d 𝔃 d + 𝔃 ) G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 4 ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G ˜ ( 1 d ) G ˜ ( 1 d ) ( 1 d ) β   G ˜ ( 1 𝔃 ) G ˜ ( 1 𝔃 ) ]     1 2 ( 1 2 β ( β + 1 ) ( β + 2 ) ) F ˜ ( d , 𝔃 ) 1 2 ( β ( β + 1 ) ( β + 2 ) ) P ˜ ( d , 𝔃 ) .
where   P ˜ ( d , 𝔃 ) = G ˜ ( d ) G ˜ ( d ) G ˜ ( 𝔃 ) G ˜ ( 𝔃 ) ,   F ˜ ( d , 𝔃 ) = G ˜ ( d ) G ˜ ( 𝔃 ) G ˜ ( 𝔃 ) G ˜ ( d ) , and P o ( d , 𝔃 ) = [ P * ( ( d , 𝔃 ) ,   o ) ,   P * ( ( d , 𝔃 ) ,   o ) ] and F o ( d , 𝔃 ) = [ F * ( ( d , 𝔃 ) ,   o ) ,   F * ( ( d , 𝔃 ) ,   o ) ] .
Proof. 
Consider G ˜ , G ˜   : [ d ,   𝔃 ] I are U D -harmonically convex N V s. Then by hypothesis, for each o [ 0 ,   1 ] , we have:
G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )     1 4 G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o + G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o     + 1 4 G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o + G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o ,   1 4 G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o + G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o + 1 4 μ G * d ,   o + 1 μ G * 𝔃 ,   o × 1 μ G * d ,   o + μ G * 𝔃 ,   o + 1 μ G * d ,   o + μ G * 𝔃 ,   o × μ G * d ,   o + 1 μ G * 𝔃 ,   o ,     = 1 4 [ G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) × G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) + G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) × G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) ]       + 1 4 [ { μ 2 + ( 1 μ ) 2 } F * ( ( d , 𝔃 ) ,   o ) + { μ ( 1 μ ) + ( 1 μ ) μ } P * ( ( d , 𝔃 ) ,   o ) ] .    
Multiplying inequality (64) by μ β 1 and integrating over ( 0 ,   1 ) :
G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )   1 4 [ 0 1 μ β 1 G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) × G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) d μ + 0 1 μ β 1 G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) × G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) ] d μ + [ 1 4 F * ( ( d , 𝔃 ) ,   o ) 0 1 μ β 1 [ μ 2 + ( 1 μ ) 2 ] d μ + 2 P * ( ( d , 𝔃 ) ,   o ) 0 1 μ β 1 μ ( 1 μ ) d μ   ] .  
Taking   ς = d 𝔃 μ d + ( 1 μ ) 𝔃 and 𝓉 = d 𝔃 ( 1 μ ) d + μ 𝔃 , we then obtain:
1 β   G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )         Γ ( β ) 4 ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G * ψ ( 1 d ) × G * ψ ( 1 d ) + ( 1 d ) β   G * ψ ( 1 𝔃 ) × G * ψ ( 1 𝔃 ) ] + 1 2 β ( 1 2 β ( β + 1 ) ( β + 2 ) ) F * ( ( d , 𝔃 ) ,   o ) + 1 2 β ( β ( β + 1 ) ( β + 2 ) ) P * ( ( d , 𝔃 ) ,   o ) .
Similarly, for G * ( ς , o ) , we have:
1 β   G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )         Γ ( β ) 4 ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G * ψ ( 1 d ) × G * ψ ( 1 d ) + + ( 1 d ) β   G * ψ ( 1 𝔃 , o ) × G * ψ ( 1 𝔃 , o ) ] + 1 2 β ( 1 2 β ( β + 1 ) ( β + 2 ) ) F * ( ( d , 𝔃 ) ,   o ) + 1 2 β ( β ( β + 1 ) ( β + 2 ) ) P * ( ( d , 𝔃 ) ,   o ) ,
that is:
  G ˜ ( 2 d 𝔃 d + 𝔃 ) G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 4 ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) β +   G ˜ ( 1 d ) G ˜ ( 1 d ) ( 1 d ) β   G ˜ ( 1 𝔃 ) G ˜ ( 1 𝔃 ) ]     1 2 ( 1 2 β ( β + 1 ) ( β + 2 ) ) F ˜ ( d , 𝔃 ) 1 2 ( β ( β + 1 ) ( β + 2 ) ) P ˜ ( d , 𝔃 ) .
Hence, the required result. □
Theorem 10.
Let G ˜ , G ˜   : [ d ,   𝔃 ] I be two U D -harmonically convex N V s, whose o -cuts define the family of I V s G o ,     G o : [ d ,   𝔃 ] K I + are provided by G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] and G o ( ς ) = [ G * ( ς , o ) ,   G * ( ς , o ) ] for all ς [ d ,   𝔃 ] , o [ 0 ,   1 ] . If G ˜ G ˜ L ( [ d ,   𝔃 ] , I ) , then:
2 G ˜ ( 2 d 𝔃 d + 𝔃 ) G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 1 β ( d 𝔃 𝔃 d ) β [ ( d + 𝔃 2 d 𝔃 ) + β G ˜ ψ ( 1 d ) G ˜ ψ ( 1 d ) ( d + 𝔃 2 d 𝔃 ) β G ˜ ψ ( 1 𝔃 ) G ˜ ψ ( 1 𝔃 ) ] ( 1 2 β 2 + 3 β 4 ( β + 1 ) ( β + 2 ) ) F ˜ ( d , 𝔃 ) β 2 + 3 β 4 ( β + 1 ) ( β + 2 ) P ˜ ( d , 𝔃 ) .
where   P ˜ ( d , 𝔃 ) = G ˜ ( d ) G ˜ ( d ) G ˜ ( 𝔃 ) G ˜ ( 𝔃 ) ,   F ˜ ( d , 𝔃 ) = G ˜ ( d ) G ˜ ( 𝔃 ) G ˜ ( 𝔃 ) G ˜ ( d ) , and P o ( d , 𝔃 ) = [ P * ( ( d , 𝔃 ) ,   o ) ,   P * ( ( d , 𝔃 ) ,   o ) ] and F o ( d , 𝔃 ) = [ F * ( ( d , 𝔃 ) ,   o ) ,   F * ( ( d , 𝔃 ) ,   o ) ] .
Proof. 
Consider G ˜ , G ˜   : [ d ,   𝔃 ] F 0 are U D -harmonically convex N V s. Then by hypothesis, for each o [ 0 ,   1 ] , we have:
G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )     1 4 G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o + G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o     + 1 4 G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o + G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o ,   1 4 G * d 𝔃 μ d + 1 μ 𝔃 ,   o × G * d 𝔃 μ d + 1 μ 𝔃 ,   o + G * d 𝔃 1 μ d + μ 𝔃 ,   o × G * d 𝔃 1 μ d + μ 𝔃 ,   o + 1 4 μ G * d ,   o + 1 μ G * 𝔃 ,   o × 1 μ G * d ,   o + μ G * 𝔃 ,   o + 1 μ G * d ,   o + μ G * 𝔃 ,   o × μ G * d ,   o + 1 μ G * 𝔃 ,   o ,     = 1 4 [ G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) × G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) + G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) × G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) ]       + 1 4 [ { μ 2 + ( 1 μ ) 2 } F * ( ( d , 𝔃 ) ,   o ) + 2 μ ( 1 μ ) P * ( ( d , 𝔃 ) ,   o ) ] .    
Multiplying inequality (66) by 2 1 + β β μ β 1 and then integrating the obtain outcome over [ 0 ,   1 2 ] :
G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )               1 4 0 1 2 2 1 + β β μ β 1 [ G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) × G * ( d 𝔃 μ d + ( 1 μ ) 𝔃 ,   o ) + G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) × G * ( d 𝔃 ( 1 μ ) d + μ 𝔃 ,   o ) ] d μ + 1 4 [ F * ( ( d , 𝔃 ) ,   o ) 0 1 2 2 1 + β β μ β 1 [ μ 2 + ( 1 μ ) 2 ] d μ + 2 P * ( ( d , 𝔃 ) ,   o ) 0 1 2 2 1 + β β μ β 1 μ ( 1 μ ) d μ   ] .
Taking   ς = d 𝔃 μ d + ( 1 μ ) 𝔃 and 𝔃 = d 𝔃 ( 1 μ ) d + μ 𝔃 , we then obtain:
2 G * 2 d 𝔃 d + 𝔃 , o × G * 2 d 𝔃 d + 𝔃 , o                     Γ β + 1 2 1 β d 𝔃 𝔃 d β I 1 𝔃 + β   G * ψ 1 d × G * ψ 1 d + I 1 d β   G * ψ 1 𝔃 × G * ψ 1 𝔃   + 1 2 β β + 1 β + 2 F * d , 𝔃 ,   o + β β + 1 β + 2 P * d , 𝔃 ,   o .
Similarly, for G * ( ς , o ) , we have:
2   G * ( 2 d 𝔃 d + 𝔃 , o ) × G * ( 2 d 𝔃 d + 𝔃 , o )     Γ ( β + 1 ) 2 1 β ( d 𝔃 𝔃 d ) β [ ( 1 𝔃 ) + β   G * ψ ( 1 d ) × G * ψ ( 1 d ) + ( 1 d ) β   G * ψ ( 1 𝔃 ) × G * ψ ( 1 𝔃 , o ) ] + ( 1 2 β 2 + 3 β 4 ( β + 1 ) ( β + 2 ) ) F * ( ( d , 𝔃 ) ,   o ) + β 2 + 3 β 4 ( β + 1 ) ( β + 2 ) P * ( ( d , 𝔃 ) ,   o ) ,  
that is:
2 G ˜ ( 2 d 𝔃 d + 𝔃 ) G ˜ ( 2 d 𝔃 d + 𝔃 ) F Γ ( β + 1 ) 2 1 β ( d 𝔃 𝔃 d ) β [ ( d + 𝔃 2 d 𝔃 ) + β G ˜ ψ ( 1 d ) G ˜ ψ ( 1 d ) ( d + 𝔃 2 d 𝔃 ) β G ˜ ψ ( 1 𝔃 ) G ˜ ψ ( 1 𝔃 ) ] ( 1 2 β 2 + 3 β 4 ( β + 1 ) ( β + 2 ) ) F ˜ ( d , 𝔃 ) β 2 + 3 β 4 ( β + 1 ) ( β + 2 ) P ˜ ( d , 𝔃 ) .

5. Conclusions

Our study of interval integral operator-type integral inequalities will broaden their applications. We provide an up and down harmonically concept for fuzzy-number-valued settings in this paper. The H–H-type inequalities were developed utilizing this idea. This study expands on several recent findings made by Kunt, and İşcan et al. [65,66], and the researchers who came after them, Refs. [61,64]. Furthermore, some non-trivial cases are provided to verify the accuracy of our primary conclusions. In the future, it will be fascinating to look into how analogous inequalities are established for other convexity types and by employing various integral operators. Fuzzy convex optimization theory may take a new turn as a result of this idea. Other researchers working in a range of scientific subjects may find the idea useful. In the future, we will try to explore this concept in a fuzzy environment.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.S.S.; formal analysis, M.S.S.; investigation, M.B.K. and M.A.N.; resources, M.S.S. and M.A.N.; data curation, A.R. and M.A.N.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K. and M.S.S.; visualization, A.R.; supervision, M.B.K. and N.A.; project administration, M.B.K. and N.A.; funding acquisition, N.A. and A.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cheng, J.-F.; Chu, Y.-M. Solution to the linear fractional differential equation using Adomian decomposition method. Math. Probl. Eng. 2011, 2011, 587068. [Google Scholar] [CrossRef] [Green Version]
  2. Cheng, J.-F.; Chu, Y.-M. On the fractional difference equations of order (2, q). Abstr. Appl. Anal. 2011, 2011, 497259. [Google Scholar] [CrossRef] [Green Version]
  3. Cheng, J.-F.; Chu, Y.-M. Fractional difference equations with real variable. Abstr. Appl. Anal. 2012, 2012, 918529. [Google Scholar] [CrossRef]
  4. Jiang, Y.-J.; Xu, X.-J. A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 2019, 62, 783–794. [Google Scholar] [CrossRef] [Green Version]
  5. Zhou, S.-H.; Jiang, Y.-J. Finite volume methods for N-dimensional time fractional Fokker–Planck equations. Bull. Malays. Math. Sci. Soc. 2019, 42, 3167–3186. [Google Scholar] [CrossRef]
  6. Pratap, A.; Raja, R.; Cao, J.-D.; Alzabut, J.; Huang, C.-X. Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks. Adv. Differ. Equ. 2020, 2020, 97. [Google Scholar] [CrossRef] [Green Version]
  7. Liu, F.-W.; Feng, L.-B.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar] [CrossRef]
  8. Huang, C.-X.; Liu, L.-Z. Sharp function inequalities and boundedness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 2012, 92, 165–176. [Google Scholar] [CrossRef] [Green Version]
  9. Zhou, X.-S.; Huang, C.-X.; Hu, H.-J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar] [CrossRef] [Green Version]
  10. Wu, J.; Liu, Y.-C. Uniqueness results and convergence of successive approximations for fractional differential equations. Hacet. J. Math. Stat. 2013, 42, 149–158. [Google Scholar]
  11. Wang, J.-F.; Chen, X.-Y.; Huang, L.-H. The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 2019, 469, 405–427. [Google Scholar] [CrossRef]
  12. Wang, J.-F.; Huang, C.-X.; Huang, L.-H. Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 2019, 33, 162–178. [Google Scholar] [CrossRef]
  13. Huang, C.-X.; Yang, Z.-C.; Yi, T.-S.; Zou, X.-F. On the basis of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 2014, 256, 2101–2114. [Google Scholar] [CrossRef]
  14. Huang, C.-X.; Long, X.; Huang, L.-H.; Fu, S. Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms. Can. Math. Bull. 2020, 63, 405–422. [Google Scholar] [CrossRef]
  15. Huang, C.-X.; Zhang, H.; Huang, L.-H. Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 2019, 18, 3337–3349. [Google Scholar]
  16. Cai, Z.-W.; Huang, J.-H.; Huang, L.-H. Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 2018, 146, 4667–4682. [Google Scholar] [CrossRef]
  17. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
  18. Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef] [Green Version]
  19. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: River Edge, NJ, USA, 2000. [Google Scholar]
  20. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  21. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  22. Hu, X.-M.; Tian, J.-F.; Chu, Y.-M.; Lu, Y.-X. On Cauchy–Schwarz inequality for N-tuple diamond-alpha integral. J. Inequal. Appl. 2020, 2020, 8. [Google Scholar] [CrossRef] [Green Version]
  23. Khan, S.; Adil Khan, M.; Chu, Y.-M. Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Methods Appl. Sci. 2020, 43, 2577–2587. [Google Scholar] [CrossRef]
  24. Song, Y.-Q.; Adil Khan, M.; Zaheer Ullah, S.; Chu, Y.-M. Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, 2018, 6595921. [Google Scholar] [CrossRef]
  25. Wu, S.-H.; Chu, Y.-M. Schurm-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, 2019, 57. [Google Scholar] [CrossRef]
  26. Wang, M.-K.; Chu, Y.-M.; Jiang, Y.-P. Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016, 46, 679–691. [Google Scholar] [CrossRef] [Green Version]
  27. Wang, M.-K.; Chu, H.-H.; Li, Y.-M.; Chu, Y.-M. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discrete Math. 2020, 14, 255–271. [Google Scholar] [CrossRef]
  28. Wang, M.-K.; He, Z.-Y.; Chu, Y.-M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 2020, 20, 111–124. [Google Scholar] [CrossRef]
  29. Wang, M.-K.; Chu, Y.-M.; Qiu, Y.-F.; Qiu, S.L. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011, 24, 887–890. [Google Scholar] [CrossRef] [Green Version]
  30. Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.-M. New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, 2020, 125. [Google Scholar] [CrossRef]
  31. Zaheer Ullah, S.; Adil Khan, M.; Khan, Z.A.; Chu, Y.-M. Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, 2019, 9487823. [Google Scholar] [CrossRef]
  32. Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M. Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, 2019, 58. [Google Scholar] [CrossRef] [Green Version]
  33. Chu, Y.-M.; Wang, G.-D.; Zhang, X.-H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 653–663. [Google Scholar] [CrossRef]
  34. Chu, Y.-M.; Xia, W.-F.; Zhang, X.-H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–421. [Google Scholar] [CrossRef] [Green Version]
  35. Latif, M.A.; Rashid, S.; Dragomir, S.S.; Chu, Y.-M. Hermite–Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 317. [Google Scholar] [CrossRef]
  36. Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M. A note on generalized convex functions. J. Inequal. Appl. 2019, 2019, 291. [Google Scholar] [CrossRef] [Green Version]
  37. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the f irst kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  38. Adil Khan, M.; Iqbal, A.; Suleman, M.; Chu, Y.-M. Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef] [Green Version]
  39. Adil Khan, M.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
  40. Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  41. Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
  42. Zhao, T.-H.; Chu, Y.-M.; Wang, H. Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2011, 2011, 896483. [Google Scholar] [CrossRef] [Green Version]
  43. Zhang, K.-S.; Wan, J.-P. p-convex functions and their properties. Pure Appl. Math. 2007, 23, 130–133. [Google Scholar]
  44. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
  45. Liu, X.-L.; Ye, G.-J.; Zhao, D.-F.; Liu, W. Fractional Hermite–Hadamard type inequalities for interval-valued functions. J. Inequal. Appl. 2019, 2019, 266. [Google Scholar] [CrossRef] [Green Version]
  46. Toplu, T.; Set, E.; İşcan, İ.; Maden, S. Hermite–Hadamard type inequalities for p-convex functions via Katugampola fractional integrals. Facta Univ. Ser. Math. Inform. 2019, 34, 149–164. [Google Scholar] [CrossRef]
  47. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  48. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  49. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  50. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  51. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  52. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
  53. Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
  54. Aubin, J.P.; Cellina, A. Differential Inclusions Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Gemany, 1984. [Google Scholar]
  55. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, UK, 1990. [Google Scholar]
  56. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  57. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef] [Green Version]
  58. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  59. Khan, M.B.; Treanțǎ, S.; Alrweili, H.; Saeed, T.; Soliman, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math. 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
  60. Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
  61. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
  62. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  63. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
  64. Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down -Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
  65. İşcan, İ. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  66. Kunt, M.; İşcan, I.; Gözütok, U. On new inequalities of HermiteHadamard–Fejér type for harmonically convex functions via fractional integrals. SpringerPlus 2016, 5, 635. [Google Scholar] [CrossRef] [Green Version]
  67. Liu, Y.J.; Liu, Z.H.; Wen, C.F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar]
  68. Liu, Z.H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
  69. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  70. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
  71. Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
  72. Ashpazzadeh, E.; Chu, Y.-M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [Google Scholar] [CrossRef]
  73. Chu, Y.-M.; Ullah, S.; Ali, M.; Tuzzahrah, G.F.; Munir, T. Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic methd. Appl. Math. Comput. 2022, 430, 127304. [Google Scholar]
  74. Chu, Y.-M.; Inc, M.; Hashemi, M.S.; Eshaghi, S. Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 2022, 41, 71. [Google Scholar] [CrossRef]
  75. Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
  76. Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics. Math. Mech. Solids. 2019, 24, 845–861. [Google Scholar] [CrossRef]
  77. Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities, Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
  78. Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
  79. Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
  80. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
  81. Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
  82. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  83. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42, 491–501. [Google Scholar] [CrossRef]
  84. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R. Acad. A 2022, 116, 1–23. [Google Scholar]
  85. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  86. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  87. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  88. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  89. Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
  90. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  91. Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
  92. Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
  93. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
  94. Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
  95. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  96. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  97. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  98. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  99. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  100. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  101. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  102. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  103. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R. Acad. A 2021, 115, 1–13. [Google Scholar] [CrossRef]
  104. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  105. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. https://doi.org/10.3390/math11030656

AMA Style

Khan MB, Rakhmangulov A, Aloraini N, Noor MA, Soliman MS. Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics. 2023; 11(3):656. https://doi.org/10.3390/math11030656

Chicago/Turabian Style

Khan, Muhammad Bilal, Aleksandr Rakhmangulov, Najla Aloraini, Muhammad Aslam Noor, and Mohamed S. Soliman. 2023. "Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities" Mathematics 11, no. 3: 656. https://doi.org/10.3390/math11030656

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop