Complex Dynamical Sampling Mechanism for the Random Pulse Circulation Model and Its Application
Abstract
:1. Introduction
2. Principle
3. Method
3.1. Random Number
3.2. Sample Pool
- (1)
- The random number generator generated a random integer i, i~U [1, L].
- (2)
- Because the capacity of the sample pool was fixed to L, the value of L was 4096 in this paper. The random variables needed for sampling must be the random numbers in the interval of [1, 4096].
- (3)
- Pulse amplitude in the sample pool was sampled, and the sampled pulse amplitude was recorded as Xi.
- (4)
- Repeated sampling.
3.3. Random Pulse Circulator
3.4. Implementation Process
4. Simulation
Algorithm 1 Multichannel spectrum generation algorithm |
Sub Macro () Dim a, b, rc, rc2 As Single Dim index As Integer For i = 1 To 1024 tt = 0 ss = “N” + Format(i) Range(ss).Value = tt Next ipeak = 0 For i = 1 To 65536 ss = “O” + Format(i) tt = Range(ss).Value index = tt / 2 ss = “N” + Format(index) tt1 = Range(ss).Value + 1 Range(ss).Value = tt1 Next i End Sub |
5. Experiment Results
5.1. Pulse Circulation Method
5.2. FMPS Algorithm Superposition Pulse Circulation Method
6. Discussion
7. Conclusions
- (1)
- The pulse circulation method can effectively multiply the counting rate and ensure that the energy resolution is not decreased.
- (2)
- Although FMPS loses a part of the counting rate while improving the energy resolution, the counting rate can be repaired using the pulse circulation method.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCA | Multi-channel pulse height analyzer |
SSPS | Simple single-pulse spectrum |
FMPS | Fast multi-pulse spectrum |
RPC | Random pulse circulator |
FPGA | Field-programmable gate array |
FIFO | First-in-first-out |
CLK | Clock |
ADC | Analog-to-digital converter |
FWHM | Full width at half maximum |
Fe | Ferrum |
Sr | Strontium |
Sn | Stannum |
References
- Meza Ramirez, C.A.; Greenop, M.; Ashton, L.; Rehman, I.U. Applications of machine learning in spectroscopy. Appl. Spectrosc. Rev. 2021, 56, 733–763. [Google Scholar] [CrossRef]
- Fernandes Andrade, D.; Pereira-Filho, E.R.; Amarasiriwardena, D. Current trends in laser-induced breakdown spectroscopy: A tutorial review. Appl. Spectrosc. Rev. 2021, 56, 98–114. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Zhao, Y.; Chen, Y.; Ke, C.; Xu, T.; He, Y. A brief review of new data analysis methods of laser induced breakdown spectroscopy: Machine learning. Appl. Spectrosc. Rev. 2020, 57, 89–111. [Google Scholar] [CrossRef]
- Bertuccio, G.; Ahangarianabhari, M.; Graziani, C.; Macera, D.; Shi, Y.; Gandola, M.; Rachevski, A.; Rashevskaya, I.; Vacchi, A.; Zampa, G.; et al. X-ray Silicon Drift Detector–CMOS Front-End System with High Energy Resolution at Room Temperature. IEEE Trans. Nucl. Sci. 2016, 63, 400–406. [Google Scholar] [CrossRef]
- Chen, E.-L.; Feng, C.-Q.; Liu, S.-B.; Ye, C.-F.; Jin, D.-D.; Lian, J.; Hu, H.-J. Readout electronics for a high-resolution soft X-ray spectrometer based on silicon drift detector. Nucl. Sci. Tech. 2017, 28, 14. [Google Scholar] [CrossRef]
- Cooper, R.; Amman, M.; Vetter, K. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 886, 1–6. [Google Scholar] [CrossRef]
- Regadío, A.; Sánchez-Prieto, S.; Prieto, M.; Tabero, J. Implementation of a real-time adaptive digital shaping for nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 735, 297–303. [Google Scholar] [CrossRef]
- Qin, H.; Lu, Z.; Yao, S.; Li, Z.; Lu, J. Combining Laser-Induced Breakdown Spectroscopy and Fourier-Transform Infrared Spectroscopy for the Analysis of Coal Properties. J. Anal. At. Spectrom. 2019, 34, 347–355. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Yu, J.; Wan, W.-J.; Zhao, X. Pulse Signal Processing Method, Device and User Terminal. China Patent 201810295672.8, 1 March 2022. (In Chinese). [Google Scholar]
- Zhou, J.-B.; Wan, W.-J.; Yu, J. Signal Processing Method, Device and User Terminal. China Patent 2018 10090267.2, 15 June 2021. (In Chinese). [Google Scholar]
- Tang, L.; Yu, J.; Zhou, J.; Fang, F.; Wan, W.; Yao, J.; Yu, S.; Liao, X. A new method for removing false peaks to obtain a precise X-ray spectrum. Appl. Radiat. Isot. 2018, 135, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhou, J.; Fang, F.; Yu, J.; Hong, X.; Liao, X.; Zhou, C.; Yu, S. Counting-loss correction for X-ray spectra using the pulse-repairing method. J. Synchrotron Radiat. 2018, 25, 1760–17678. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Wei-Dong, Z.; Song-Ke, Y.; Ze, L.; Xiao-Dong, Y.; Yuan, M.; Xing-Lu, H. Optimization design of X-ray spectrum data processing platform. Spectrosc. Spectr. Anal. 2021, 41, 763–3767. [Google Scholar]
- Tang, L.; Zhang, J.; Shi, K.; Liu, B.; Liu, X.; Zhao, Y.; Li, Y.; Liao, X.; Liu, Z.; Yu, S.; et al. Application of an Improved Seeds Local Averaging Algorithm in X-ray Spectrum. Math. Probl. Eng. 2021, 2021, 5545818. [Google Scholar] [CrossRef]
- Shi, K.; Wang, J.; Tang, Y.; Zhong, S. Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies. Fuzzy Sets Syst. 2020, 381, 1–25. [Google Scholar] [CrossRef]
- Shi, K.; Wang, J.; Zhong, S.; Tang, Y.; Cheng, J. Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 2020, 394, 40–64. [Google Scholar] [CrossRef]
- Shi, K.; Tang, Y.; Zhong, S.; Yin, C.; Huang, X.; Wang, W. Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process. Int. J. Robust Nonlinear Control 2018, 28, 1693–1714. [Google Scholar] [CrossRef]
- Cai, X.; Zhong, S.; Wang, J.; Shi, K. Robust H∞ control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts. Appl. Math. Comput. 2020, 385, 125432. [Google Scholar] [CrossRef]
- Yu, G.-G. Research on Intelligent High Radioactive Nuclear-like Signal Generator System. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2017. (In Chinese). [Google Scholar]
- Wang, M.; Zhou, J.; Hong, X.; Liu, Y. Research of single pulse trapezoidal shaping algorithm in digital nuclear spectrum measurement. J. Comput. Theor. Nano Sci. 2016, 13, 4510–4514. [Google Scholar] [CrossRef]
- Li, D.C.; Ren, Z.G.; Yang, L.; Qi, Z.; Meng, X.T.; Hu, B.T. A novel acquisition method for nuclear spectra based on pulse area analysis. Chin. Phys. C 2015, 39, 67–70. [Google Scholar] [CrossRef]
Element Type | Channel Address | Coriginal | Cmultiplication | Cmultiplication/Coriginal |
---|---|---|---|---|
Fe | 384–512 | 1754.67 | 7005.74 | 399.26% |
Sr | 896–1152 | 5240.53 | 20,940.77 | 399.59% |
Sn | 1728–1856 | 419.11 | 1656.21 | 395.17% |
- | 1-2048 | 8082.93 | 32,277.23 | 399.32% |
Element Type | Channel Address | Coriginal | CFMPS | Crepaired | Crepaired/Coriginal |
---|---|---|---|---|---|
Fe | 384–512 | 1754.67 | 811.62 | 2433.86 | 138.71% |
Sr | 896–1152 | 5240.53 | 3254.26 | 7210.76 | 137.59% |
Sn | 1728–1856 | 419.11 | 252.61 | 555.68 | 132.59% |
- | 1–2048 | 8082.93 | 4669.81 | 11,029.08 | 136.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Shi, K.; Yu, S. Complex Dynamical Sampling Mechanism for the Random Pulse Circulation Model and Its Application. Mathematics 2023, 11, 668. https://doi.org/10.3390/math11030668
Tang L, Shi K, Yu S. Complex Dynamical Sampling Mechanism for the Random Pulse Circulation Model and Its Application. Mathematics. 2023; 11(3):668. https://doi.org/10.3390/math11030668
Chicago/Turabian StyleTang, Lin, Kaibo Shi, and Songke Yu. 2023. "Complex Dynamical Sampling Mechanism for the Random Pulse Circulation Model and Its Application" Mathematics 11, no. 3: 668. https://doi.org/10.3390/math11030668
APA StyleTang, L., Shi, K., & Yu, S. (2023). Complex Dynamical Sampling Mechanism for the Random Pulse Circulation Model and Its Application. Mathematics, 11(3), 668. https://doi.org/10.3390/math11030668