Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning
Abstract
:1. Introduction
2. Mathematical Model
2.1. Problem Statement
2.2. Problem Instance
3. Algorithm Based on the DRL
3.1. Policy Network Based on Pointer Network
3.2. Network Training Based on Reinforcement Learning
Algorithm 1 Network training based on the RL |
procedure Training set S, number of training steps T, batch size B |
Initialize Pointer network param θ |
for t = 1 to T do |
Select a batch of sample si for i {1,2…, B} |
Send si to pointer network, sample cutting solution oi based on for i {1,2…, B} |
Obtain cutting utilization rate |
Let |
Update θ = ADAM (θ, gθ) |
end for |
return pointer network parameters θ |
end procedure |
4. Calculation Experiment and Analysis
4.1. Experimental Results
4.2. Analysis and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stadtler, H. A one-dimensional cutting stock problem in the aluminium industry and its solution. Eur. J. Oper. Res. 1990, 44, 209–223. [Google Scholar] [CrossRef]
- Johnson, M.; Rennick, C.; Zak, E. Skiving Addition to the Cutting Stock Problem in the Paper Industry. SIAM Rev. 1997, 39, 472–483. [Google Scholar] [CrossRef]
- Cui, Y. A cutting stock problem and its solution in the manufacturing industry of large electric generators. Comput. Oper. Res. 2005, 32, 1709–1721. [Google Scholar] [CrossRef]
- Ogunranti, G.; Oluleye, A. Minimizing waste (off-cuts) using cutting stock model: The case of one-dimensional cutting stock problem in wood working industry. J. Ind. Eng. Manag. 2016, 9, 834–859. [Google Scholar] [CrossRef] [Green Version]
- Wattanasiriseth, P.; Krairit, A. An Application of Cutting-Stock Problem in Green Manufacturing: A Case Study of Wooden Pallet Industry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 530, 12005. [Google Scholar] [CrossRef]
- Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007, 183, 1109–1130. [Google Scholar] [CrossRef]
- Lima, V.; Alves, C.; Clautiaux, F.; Iori, M.; Valério, D.; José, M. Arc flow formulations based on dynamic programming: Theoretical foundations and applications. Eur. J. Oper. Res. 2022, 296, 3–21. [Google Scholar] [CrossRef]
- Dyckhoff, H. A New Linear Programming Approach to the Cutting Stock Problem. Oper. Res. 1981, 29, 1092–1104. [Google Scholar] [CrossRef]
- Brandão, F.; Pedroso, J. Bin packing and related problems: General arc-flow formulation with graph compression. Comput. Oper. Res. 2016, 69, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Yang, L.; Sheng, Z. Research on Multi-Branches Tree Traversal Algorithm of One-Dimensional Cutting Stock Problem. Mech. Eng. Autom. 2018, 15, 11–12. [Google Scholar] [CrossRef]
- Kang, M.; Yoon, K. An improved best-first branch-and-bound algorithm for unconstrained two-dimensional cutting problems. Int. J. Prod. Res. 2011, 49, 4437–4455. [Google Scholar] [CrossRef]
- Lu, H.; Huang, Y. An efficient genetic algorithm with a corner space algorithm for a cutting stock problem in the TFT-LCD industry. Eur. J. Oper. Res. 2015, 246, 51–66. [Google Scholar] [CrossRef]
- Haessler, R.; Sweeney, P. Cutting stock problems and solution procedures. Eur. J. Oper. Res. 1991, 54, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Wäscher, G.; Gau, T. Heuristics for the integer one-dimensional cutting stock problem: A computational study. Oper. Res. Spektrum 1996, 18, 131–144. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Wang, K. An Ant Colony Algorithm for One-dimensional Cutting-stock Problem. Mech. Sci. Technol. Aerosp. Eng. 2008, 27, 1681–1684. [Google Scholar]
- Guan, W.; Gong, J.; Xue, H. A Hybrid Heuristic Algorithm for the One-Dimensional Cutting Stock Problem. Mach. Des. Manuf. 2018, 8, 237–239. [Google Scholar]
- Zhu, S. The Research on Optimization Algorithms for one-Dimensional Cutting Stock Problems. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2013. [Google Scholar]
- Cui, Y.; Song, X.; Chen, Y. New model and heuristic solution approach for one-dimensional cutting stock problem with usable leftovers. J. Oper. Res. Soc. 2017, 68, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Han, Z.; Luo, D.; Xiao, H. Research on One-Dimensional Cutting Stock Problem Based on Recursive Matrix Column Generation Algorithm. Mach. Des. Manuf. 2022, 117–119. [Google Scholar] [CrossRef]
- Belov, G.; Scheithauer, G. Setup and Open-Stacks Minimization in One-Dimensional Stock Cutting. INFORMS J. Comput. 2007, 19, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Cui, Y.; Li, D. Study on the solution of one-dimensional cutting stock for multiple stock lengths with variable cross-section. Forg. Stamp. Technol. 2017, 42, 161–165. [Google Scholar]
- Cerqueira, G.; Aguiar, S.; Marques, M. Modified Greedy Heuristic for the one-dimensional cutting stock problem. J. Comb. Optim. 2021, 42, 657–674. [Google Scholar] [CrossRef]
- Ravelo, S.; Meneses, C.; Santos, M. Meta-heuristics for the one-dimensional cutting stock problem with usable leftover. J. Heuristics 2020, 26, 585–618. [Google Scholar] [CrossRef]
- Pimenta, Z.; Sakuray, F.; Hoto, R. A heuristic for the problem of one-dimensional steel coil cutting. Comput. Appl. Math. 2021, 40, 39. [Google Scholar] [CrossRef]
- Tian, S.; Lv, L.; Cai, Y. Design and implementation of a simple algorithm for solving one dimensional cuttking block problem based on Lingo. Ind. Sci. Trib. 2021, 20, 45–47. [Google Scholar]
- Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.; Xu, C. Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning. Adv. Neural Inf. Process. Syst. 2020, 33, 1621–1632. [Google Scholar]
- Park, J.; Chun, J.; Kim, S.; Kim, Y. Learning to schedule job-shop problems: Representation and policy learning using graph neural network and reinforcement learning. Int. J. Prod. Res. 2021, 59, 3360–3377. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Gao, R.; Cao, Z.; Lim, A.; Song, W.; Zhang, J. Deep Reinforcement Learning for Solving the Heterogeneous Capacitated Vehicle Routing Problem. IEEE Trans. Cybern. 2022, 52, 13572–13585. [Google Scholar] [CrossRef]
- Xin, L.; Song, W.; Cao, Z.; Zhang, J. Step-Wise Deep Learning Models for Solving Routing Problems. IEEE Trans. Ind. Inform. 2021, 17, 4861–4871. [Google Scholar] [CrossRef]
- Kool, W.; Van, H.; Welling, M. Attention, learn to solve routing problems. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Xin, L.; Song, W.; Cao, Z.; Zhang, J. NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem. Adv. Neural Inf. Process. Syst. 2021, 34, 7472–7483. [Google Scholar]
- Ivanov, D.; Kiselev, M.; Larionov, D. Neural Network Optimization for Reinforcement Learning Tasks Using Sparse Computations. arXiv 2022, arXiv:2201.02571. [Google Scholar]
- Zhou, R.; Tian, Y.; Wu, Y.; Du, S. Understanding Curriculum Learning in Policy Optimization for Solving Combinatorial Optimization Problems. arXiv 2022, arXiv:2202.05423. [Google Scholar]
- Peng, B.; Wang, J.; Zhang, Z. A Deep Reinforcement Learning Algorithm Using Dynamic Attention Model for Vehicle Routing Problems. Commun. Comput. Inf. Sci. 2020, 1205, 636–650. [Google Scholar]
- Pitombeira-Neto, A.R.; Murta, A.H.F. A reinforcement learning approach to the stochastic cutting stock problem. Eur. J. Comput. Optim. 2022, 10, 100027. [Google Scholar] [CrossRef]
- Fang, J.; Rao, Y.; Zhao, X.; Du, B. A Hybrid Reinforcement Learning Algorithm for 2D Irregular Packing Problems. Mathematics 2023, 11, 327. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, S.; Su, J.; Xiao, J.; Zhuang, Y. Tell and guess: Cooperative learning for natural image caption generation with hierarchical refined attention. Multimed. Tools Appl. 2021, 80, 16267–16282. [Google Scholar] [CrossRef]
- Xia, B.; Wong, C.; Peng, Q.; Yuan, W.; You, X. CSCNet: Contextual semantic consistency network for trajectory prediction in crowded spaces. Pattern Recognit. 2022, 126, 108552. [Google Scholar] [CrossRef]
- Song, J.; Kim, S.; Yoon, S. AligNART: Non-autoregressive Neural Machine Translation by Jointly Learning to Estimate Alignment and Translate. In Proceedings of the 2021 Conference On Empirical Methods in Natural Language Processing (EMNLP 2021), Punta Cana, Dominican Republic, 7–11 November 2021; pp. 1–14. [Google Scholar]
- Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2692–2700. [Google Scholar]
- Bello, I.; Pham, H.; Le, Q.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017 Workshop Track Proceedings, Toulon, France, 24–26 April 2017. [Google Scholar]
- Chen, H.; Fan, J.; Liu, Y. Solving dynamic traveling salesman problem by deep reinforcement learning. J. Comput. Appl. 2022, 42, 1194–1200. [Google Scholar]
- Lombardi, M.; Milano, M. Boosting combinatorial problem modeling with machine learning. In Proceedings of the 27th IJCAI International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 5472–5478. [Google Scholar]
- Joshi, C.; Thomas, L.; Bresson, X. An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem. arXiv 2019, arXiv:1906.01227. [Google Scholar]
- Bogyrbayeva, A.; Yoon, T.; Ko, H.; Lim, S.; Yun, H.; Kwon, C. A Deep Reinforcement Learning Approach for Solving the Traveling Salesman Problem with Drone. arXiv 2021, arXiv:2112.12545. [Google Scholar] [CrossRef]
- Zhao, H.; She, Q.; Zhu, C.; Yang, Y.; Xu, K. Online 3D bin packing with constrained deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February; 35, pp. 741–749.
- Kang, M.; Oh, J.; Lee, Y.; Park, K.; Park, S. Selecting Heuristic Method for One-dimensional Cutting Stock Problems Using Artificial Neural Networks. Korean J. Comput. Des. Eng. 2020, 25, 67–76. [Google Scholar] [CrossRef]
- Almeida, R.; Steiner, M. Resolution of one-dimensional bin packing problems using augmented neural networks and minimum bin slack. Int. J. Innov. Comput. Appl. 2016, 7, 214–224. [Google Scholar] [CrossRef]
- Kantorovich, L. Mathematical Methods of Organizing and Planning Production. Manag. Sci. 1960, 6, 366–422. [Google Scholar] [CrossRef]
- Gilmore, P.; Gomory, R. A Linear Programming Approach to the Cutting Stock Problem–Part II. Oper. Res. 1963, 11, 863–888. [Google Scholar] [CrossRef]
- Haessler, R. A Heuristic Programming Solution to a Nonlinear Cutting Stock Problem. Manag. Sci. 1971, 17. [Google Scholar] [CrossRef]
- Haessler, R. Controlling Cutting Pattern Changes in One-Dimensional Trim Problems. Oper. Res. 1975, 23, 483–493. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Williams, R. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8, 229–256. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Rao, Y.; Guo, X.; Zhao, X. A reinforcement learning algorithm for two-dimensional irregular packing problems. In Proceedings of the ACAI’21: 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 22–24 December 2021. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Chintala, S.; Killeen, T.; Gimelshein, N.; Lin, Z.; et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing Systems 32 (NIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035. [Google Scholar]
- Li, P.; Wang, Q.; Qiu, Y. Optimization for One-Dimensional Cutting UsingHybrid Genetic Algorithm. J. Shanghai Jiaotong Univ. 2001, 35, 1557–1560. [Google Scholar]
- Shen, X.; Yang, J.; Ying, W. Adaptive General Particle Swarm Optimization for One-Dimension Cutting Stock Problem. J. South China Univ. Technol. (Nat. Sci. Ed.) 2007, 35, 113–117. [Google Scholar]
- Hou, G. Research of One-dimensional Cutting Stock Problem Based on Improved Pyramid Evolution Strategy. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2020. [Google Scholar]
Instance | Raw Material Length L (mm) | Length (mm) and Quantity of Steel Pieces | |||||
---|---|---|---|---|---|---|---|
Length | Quantity | Length | Quantity | Length | Quantity | ||
S1 | 18,000 | 3280 | 4 | 2786 | 6 | 1908 | 8 |
3275 | 4 | 2757 | 5 | 1849 | 9 | ||
3085 | 4 | 2680 | 4 | 1812 | 5 | ||
3005 | 5 | 2543 | 3 | 1770 | 12 | ||
2952 | 4 | 2304 | 10 | 1712 | 16 | ||
2950 | 4 | 2167 | 4 | 1689 | 8 | ||
2868 | 2 | 2162 | 16 | 1404 | 8 | ||
2859 | 4 | 2006 | 8 | 1352 | 8 | ||
2830 | 6 | 1975 | 8 | 1315 | 8 | ||
1308 | 8 | - | - | - | - |
Instance | Raw Material Length L (mm) | Length (mm) and Quantity of Steel Pieces | |||||
---|---|---|---|---|---|---|---|
Length | Quantity | Length | Quantity | Length | Quantity | ||
S2 | 25,800 | 1615 | 8 | 1850 | 1 | 2686 | 1 |
1622 | 8 | 1955 | 8 | 2773 | 1 | ||
1634 | 8 | 1968 | 8 | 2777 | 4 | ||
1655 | 8 | 2068 | 8 | 2788 | 1 | ||
1709 | 8 | 2162 | 16 | 2799 | 1 | ||
1722 | 8 | 2213 | 2 | 2832 | 4 | ||
1770 | 8 | 2334 | 8 | 2838 | 2 | ||
1812 | 1 | 2591 | 3 | 2843 | 4 | ||
1849 | 8 | 2674 | 1 | 2851 | 1 | ||
2891 | 1 | 2987 | 4 | 3082 | 1 | ||
3352 | 2 | 3373 | 2 | 3388 | 4 | ||
4273 | 4 | 4288 | 4 | - | - |
Instance | Raw Material Length L (mm) | Length (mm) and Quantity of Large-Scale Wire Pieces | |||||
---|---|---|---|---|---|---|---|
Length | Quantity | Length | Quantity | Length | Quantity | ||
S3 | 18,000 | 4600 | 20 | 4300 | 140 | 3000 | 160 |
4000 | 140 | 4150 | 30 | 3800 | 60 | ||
3205 | 99 | 2838 | 34 | 2240 | 28 | ||
2838 | 34 | 2860 | 10 | 2500 | 80 | ||
2400 | 120 | 2334 | 67 | 2162 | 156 | ||
1968 | 29 | 1955 | 100 | 1800 | 50 | ||
1600 | 140 | - | - | - | - |
Instance | Algorithm | Quantity of Raw Materials Consumed | Average Utilization Rate | Average Utilization Rate (Removal of the Raw Material Containing the Maximum Remaining Material) | Length of the Maximum Remaining Material |
---|---|---|---|---|---|
S1 | DRL-CSP | 24 | 94.56% | 96.43% | 7587 |
HGA | 23 | 97.67% | 99.27% | 6738 | |
AGAPSO | 23 | 97.67% | 99.58% | 8529 | |
DEPES | 23 | 97.67% | 99.82% | 8909 | |
PES | 23 | 97.67% | 99.74% | 8621 | |
S2 | DRL-CSP | 15 | 90.99% | 95.68% | 19,255 |
AGAPSO | 15 | 93.25% | 99.47% | 24,185 | |
S3 | DRL-CSP | 250 | 91.99% | 92.41% | 11,600 |
Label of the Raw Material | Piece Length/mm (Quantity of Pieces) | Length of the Remaining Material/mm | Utilization Rate/% | |||||
---|---|---|---|---|---|---|---|---|
1 | 1315 | 1308 | 2006 | 3280 | 2868 | 2757 | 0 | 100 |
2304 | 2162 | - | - | - | - | |||
2 | 1404 | 2786(2) | 1352 | 3275 | 2859 | 1849 | 0 | 100 |
1689 | - | - | - | - | - | |||
3 | 1352 | 1975(2) | 3280 | 2786 | 2162(2) | 2304 | 4 | 99.98 |
4 | 1689 | 1712 | 1770(2) | 2920 | 2868 | 2006 | 5 | 99.97 |
1908 | 1352 | - | - | - | - | |||
5 | 1975 | 1849 | 1712(2) | 3005 | 2757 | 2680 | 6 | 99.97 |
2304 | - | - | - | - | - | |||
6 | 1689 | 1849 | 1352 | 3085 | 2859 | 2162 | 7 | 99.96 |
2830 | 2167 | - | - | - | - | |||
7 | 1812 | 1770 | 1712(2) | 1849(2) | 2006(2) | 3275 | 9 | 99.95 |
8 | 1315 | 1352(2) | 1712(2) | 2952 | 2304 | 1308 | 12 | 99.93 |
2006 | 1975 | - | - | - | - | |||
9 | 1812 | 1849 | 2167(2) | 3280 | 2830 | 1712 | 21 | 99.88 |
2162 | - | - | - | - | - | |||
10 | 1689 | 1712 | 1770(2) | 2830 | 2680 | 1308 | 29 | 99.84 |
2304 | 1908 | - | - | - | - | |||
11 | 1712 | 1308(2) | 1770 | 1689 | 1908(2) | 1812 | 36 | 99.80 |
2006 | 2543 | - | - | - | - | |||
12 | 1352 | 1712 | 1908(3) | 2920 | 2757 | 1315 | 58 | 99.68 |
2162 | - | - | - | - | - | |||
13 | 1308 | 1712(3) | 1770 | 1812 | 1308 | 1908 | 79 | 99.56 |
1849 | 2830 | - | - | - | - | |||
14 | 2757 | 2304 | 2162(5) | 2006 | - | - | 123 | 99.32 |
15 | 2952 | 2830 | 2757 | 2543 | 2304(2) | 2162 | 148 | 99.18 |
16 | 2859 | 1404(3) | 2786 | 2162(2) | 1770(2) | - | 279 | 98.45 |
17 | 2162 | 2167 | 2304 | 3085 | 2952 | 1975 | 569 | 96.84 |
2786 | - | - | - | - | - | |||
18 | 3005 | 2920 | 2859 | 2830 | 2786 | 2680 | 920 | 94.89 |
19 | 2006 | 1812 | 3005(2) | 1712(2) | 2680 | - | 2068 | 88.51 |
20 | 1308 | 1404(2) | 1315(2) | 3275 | 2920 | 2830 | 2229 | 87.62 |
21 | 3005 | 1770(2) | 3280 | 3085 | 1315(2) | - | 2460 | 86.33 |
22 | 3275 | 1352 | 1689 | 1404(2) | 3085 | 2952 | 2839 | 84.23 |
23 | 2543 | 2304 | 2162 | 1975 | 1849(2) | 1308 | 4010 | 77.72 |
24 | 1315 | 1770 | 1975(2) | 1689(2) | - | - | 7587 | 57.85 |
Label of the Raw Material | Piece Length/mm (Quantity of Pieces) | Length of the Remaining Material/mm | Utilization Rate/% | |||||
---|---|---|---|---|---|---|---|---|
1 | 3352 | 1655 | 1722(2) | 1955(2) | 2334 | 2162 | 1 | 100 |
2838 | 2068(2) | 1968 | - | - | - | |||
2 | 4273 | 1615 | 2334(2) | 3388 | 3373 | 2851 | 1 | 100 |
2832 | 2799 | - | - | - | - | |||
3 | 4288 | 1655 | 1812 | 3082 | 2891 | 2832 | 2 | 99.99 |
2162 | 2068 | 2674 | 2334 | - | - | |||
4 | 4273 | 1615 | 1849(3) | 3388 | 2162 | 1850 | 21 | 99.92 |
1634 | 1770(3) | - | - | - | - | |||
5 | 4273 | 1615(3) | 4288(2) | 3388 | 1722 | 2773 | 223 | 99.14 |
6 | 1968 | 2162(2) | 2838 | 2068(2) | 1709(2) | 2686 | 419 | 98.38 |
2334 | 1722 | 1955 | - | - | - | |||
7 | 2777 | 1968 | 1634(2) | 1722 | 2334 | 2843 | 614 | 97.62 |
1709 | 2591 | 2987(2) | - | - | - | |||
8 | 2068 | 1849(2) | 1655(2) | 2777 | 2162 | 2334 | 926 | 96.41 |
1770 | 1955 | 1968 | 2832 | - | - | |||
9 | 4288 | 1615 | 1622(2) | 4273 | 3388 | 2987 | 1066 | 95.87 |
2777 | 2162 | - | - | - | - | |||
10 | 1849 | 1955(2) | 2213 | 2162 | 1968 | 2068 | 1558 | 93.96 |
1722 | 2591 | 1655 | 1770 | 2334 | - | |||
11 | 2832 | 1968(2) | 2162(3) | 1955(2) | 1709(2) | 1770(2) | 1678 | 93.50 |
12 | 1622 | 2843(2) | 1634(2) | 2777 | 2591 | 1849 | 1758 | 93.19 |
2213 | 2068 | 1968 | - | - | - | |||
13 | 1849 | 2162(4) | 2788 | 1709(2) | 1655(2) | 1700 | 2295 | 91.10 |
1722 | - | - | - | - | - | |||
14 | 2843 | 1722 | 2987 | 3352 | 1634 | 3373 | 5037 | 80.48 |
1622 | 1615(2) | - | - | - | - | |||
15 | 1655 | 1634(2) | 1622 | - | - | - | 19,255 | 25.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Rao, Y.; Luo, Q.; Xu, J. Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning. Mathematics 2023, 11, 1028. https://doi.org/10.3390/math11041028
Fang J, Rao Y, Luo Q, Xu J. Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning. Mathematics. 2023; 11(4):1028. https://doi.org/10.3390/math11041028
Chicago/Turabian StyleFang, Jie, Yunqing Rao, Qiang Luo, and Jiatai Xu. 2023. "Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning" Mathematics 11, no. 4: 1028. https://doi.org/10.3390/math11041028
APA StyleFang, J., Rao, Y., Luo, Q., & Xu, J. (2023). Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning. Mathematics, 11(4), 1028. https://doi.org/10.3390/math11041028