Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions
Abstract
:1. Introduction
2. Preliminaries
3. The Class
4. Coefficient Bounds of the Subclass
5. Corollaries and Consequences
6. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poisson, S. Probabilité des Jugements en Matière Criminelle et en Matière civile, Précédées des Règles générales du Calcul des Probabilitiés; Bachelier: Paris, France, 1837; Volume 1. [Google Scholar]
- Legendre, A. Recherches sur Laattraction des Sphéroides Homogénes; Mémoires présentes par divers savants a laAcadémie des Sciences de laInstitut de France: Paris, France, 1785; Volume 10, pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef]
- Quesne, C. Disentangling q-exponentials: A general approach. Int. J. Theor. Phys. 2004, 43, 545–559. [Google Scholar] [CrossRef]
- Long, G.; Liu, Y.; Xu, W.; Zhou, P.; Zhou, J.; Xu, G.; Xiao, B. Analysis of crack problems in multilayered elastic medium by a consecutive stiffness method. Mathematics 2022, 10, 4403. [Google Scholar] [CrossRef]
- Wang, R.; Singh, A.K.; Kolan, S.R.; Tsotsas, E. Investigation of the Relationship between the 2D and 3D Box-Counting Fractal Properties and Power Law Fractal Properties of Aggregates. Fractal Fract. 2022, 6, 728. [Google Scholar] [CrossRef]
- Mustafa, N.; Nezir, V. Analytic functions expressed with q-Poisson distribution serie. Turk. J. Sci. 2021, 6, 24–30. [Google Scholar]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-starlike functions defined by q-Ruscheweyh differential operator in symmetric conic domain. Symmetry 2021, 13, 1974. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator involving-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef]
- Alhabib, R.; Ranna, M.M.; Farah, H.; Salama, A.A. Some neutrosophic probability distributions. Neutrosophic Sets Syst. 2018, 22, 30–38. [Google Scholar]
- Askey, R.; Ismail, M.E.H. A Generalization of Ultraspherical Polynomials, Studies of Pure Mathematics; Birkhauser: Boston, MA, USA, 1983. [Google Scholar]
- Chakrabarti, R.; Jagannathan, R.; Mohammed, S.S.N. New connection formulae for the q–orthogonal polynomials via a series expansion of the q–exponential. J. Phys. A Math. Gen. 2006, 39, 12371. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete–Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R. A generalization of Gegenbauer polynomials and bi-univalent functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 62, 11–17. [Google Scholar]
- Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32–39. [Google Scholar]
- Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Mat. 2020, 32, 631–643. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 693908. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M. Admissible classes of multivalent functions associated with an integral operator. Annales Universitatis Mariae Curie-Sklodowska, Sectio A–Mathematica 2019, 73, 57–73. [Google Scholar]
- Seoudy, T. Convolution Results and Fekete–Szegö Inequalities for Certain Classes of Symmetric-Starlike and Symmetric-Convex Functions. J. Math. 2022, 2022, 8203921. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Seoudy, T.M. Subclass of Analytic Functions Related with Pascal Distribution Series. J. Math. 2022, 2022, 8355285. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete–Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete–Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Xu, D.; Cui, X.; Xian, H. An extended EDAS method with a single-valued complex neutrosophic set and its application in green supplier selection. Mathematics 2020, 8, 282. [Google Scholar] [CrossRef]
- Popescu, C.R.G.; Popescu, G.N. An exploratory study based on a questionnaire concerning green and sustainable finance, corporate social responsibility, and performance: Evidence from the Romanian business environment. J. Risk Financ. Manag. 2019, 12, 162. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete–Szegö problem for classes of bi-univalent functions. Bull. Belg. Math.-Soc.-Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. https://doi.org/10.3390/math11040868
Alsoboh A, Amourah A, Darus M, Sharefeen RIA. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics. 2023; 11(4):868. https://doi.org/10.3390/math11040868
Chicago/Turabian StyleAlsoboh, Abdullah, Ala Amourah, Maslina Darus, and Rami Issa Al Sharefeen. 2023. "Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions" Mathematics 11, no. 4: 868. https://doi.org/10.3390/math11040868
APA StyleAlsoboh, A., Amourah, A., Darus, M., & Sharefeen, R. I. A. (2023). Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics, 11(4), 868. https://doi.org/10.3390/math11040868