A Review on Business Analytics: Definitions, Techniques, Applications and Challenges
Abstract
:1. Introduction
2. Methodology and Literature Analysis
2.1. Methodology
2.2. Literature Analysis
3. Definitions of Business Analytics
Category | Definition | Reference |
---|---|---|
Techniques | the general term for any data analytics in business problems | [5] |
data science in business | [6] | |
a broad category of applications, technologies and processes for gathering, storing, accessing and analyzing data to help business users make better decisions | [8] | |
the intersection of OR, artificial intelligence (machine learning) and information systems | [1] | |
Process | the encapsulation of all mechanisms that help convert data into actionable insight for better and faster decision-making | [9] |
a scientific process of transforming data into insight for making better decisions | [10] | |
Practice | an ability of firms and organizations to collect, manage and analyze data from a variety of sources in order to enhance the understanding of business processes, operations and systems | [11] |
the extensive use of data, statistical and quantitative analysis, explanatory and predictive models and fact-based management to drive decisions and actions | [12] | |
Management | one of the qualitative methodologies to derive valuable meanings based on data | [13] |
a paradigm shifter of models, technologies, opportunities and capabilities used to scrutinize a corporation’s data and performance to transpire data-driven decision-making analytics for the corporation’s future direction and investment plans | [3] |
4. Techniques of Business Analytics
4.1. Descriptive Analytics Techniques
4.1.1. Data Visualization
4.1.2. Data Analysis
- Association analysis
- Cluster analysis
4.2. Predictive Analytics Techniques
4.2.1. Statistical Techniques
- Regression model
- Time series model
4.2.2. Machine Learning and Artificial Intelligence Techniques
- Support vector machine
- Nearest neighbor
- Decision tree
- Ensemble learning
- Artificial Neural network
- Deep learning
4.3. Prescriptive Analytics
4.3.1. Traditional Optimization Algorithm
4.3.2. Heuristic Algorithm
- Simple Heuristic Algorithms
- Meta-heuristic algorithms
- Hyper-Heuristic algorithms
4.4. Summary of Techniques
5. Business Analytics Applications
5.1. Applications in Functional Areas
5.2. Applications in Industry Sectors
6. Challenges in Business Analytics
6.1. Data Quality
6.2. Data Security and Privacy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mortenson, M.J.; Doherty, N.F.; Robinson, S. Operational Research from Taylorism to Terabytes: A Research Agenda for the Analytics Age. Eur. J. Oper. Res. 2015, 241, 583–595. [Google Scholar] [CrossRef]
- Holsapple, C.; Lee-Post, A.; Pakath, R. A Unified Foundation for Business Analytics. Decis. Support Syst. 2014, 64, 130–141. [Google Scholar] [CrossRef]
- Bayrak, T. A Review of Business Analytics: A Business Enabler or Another Passing Fad. Procedia-Soc. Behav. Sci. 2015, 195, 230–239. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A Longitudinal and Cross-Disciplinary Comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Duan, L.; Xiong, Y. Big Data Analytics and Business Analytics. J. Manag. Anal. 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Delen, D.; Zolbanin, H.M. The Analytics Paradigm in Business Research. J. Bus. Res. 2018, 90, 186–195. [Google Scholar] [CrossRef]
- Watson, H.J. Tutorial: Business Intelligence—Past, Present, and Future. CAIS 2009, 25, 39. [Google Scholar] [CrossRef]
- Delen, D.; Ram, S. Research Challenges and Opportunities in Business Analytics. J. Bus. Anal. 2018, 1, 2–12. [Google Scholar] [CrossRef]
- INFORMS. Certified Analytics Professional Handbook; INFORMS: Catonsville, MD, USA, 2016. [Google Scholar]
- Kraus, M.; Feuerriegel, S.; Oztekin, A. Deep Learning in Business Analytics and Operations Research: Models, Applications and Managerial Implications. Eur. J. Oper. Res. 2020, 281, 628–641. [Google Scholar] [CrossRef]
- Davenport, T.H.; Harris, J.G. Competing on Analytics: The New Science of Winning. Language 2007, 15, 24. [Google Scholar]
- Lee, C.S.; Cheang, P.Y.S.; Moslehpour, M. Predictive Analytics in Business Analytics: Decision Tree. Adv. Decis. Sci. 2022, 26, 1–29. [Google Scholar]
- Silva, A.J.; Cortez, P.; Pereira, C.; Pilastri, A. Business Analytics in Industry 4.0: A Systematic Review. Expert Syst. 2021, 38, e12741. [Google Scholar] [CrossRef]
- Ware, C. Information Visualization: Perception for Design; Morgan Kaufmann: Burlington, MA, USA, 2019; ISBN 0-12-812876-3. [Google Scholar]
- Batt, S.; Grealis, T.; Harmon, O.; Tomolonis, P. Learning Tableau: A Data Visualization Tool. J. Econ. Educ. 2020, 51, 317–328. [Google Scholar] [CrossRef]
- Becker, L.T.; Gould, E.M. Microsoft Power BI: Extending Excel to Manipulate, Analyze, and Visualize Diverse Data. Ser. Rev. 2019, 45, 184–188. [Google Scholar] [CrossRef]
- Park, J.S.; Chen, M.-S.; Yu, P.S. An Effective Hash-Based Algorithm for Mining Association Rules. ACM Sigmod Rec. 1995, 24, 175–186. [Google Scholar] [CrossRef]
- Brin, S.; Motwani, R.; Ullman, J.D.; Tsur, S. Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, Tucson, AZ, USA, 13–15 May 1997; pp. 255–264. [Google Scholar]
- Yang, X.Y.; Liu, Z.; Fu, Y. MapReduce as a Programming Model for Association Rules Algorithm on Hadoop. In Proceedings of the 3rd International Conference on Information Sciences and Interaction Sciences, Chengdu, China, 23–25 June 2010; pp. 99–102. [Google Scholar]
- Li, N.; Zeng, L.; He, Q.; Shi, Z. Parallel Implementation of Apriori Algorithm Based on Mapreduce. In Proceedings of the 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Kyoto, Japan, 8–10 August 2012; pp. 236–241. [Google Scholar]
- Sornalakshmi, M.; Balamurali, S.; Venkatesulu, M.; Krishnan, M.N.; Ramasamy, L.K.; Kadry, S.; Lim, S. An Efficient Apriori Algorithm for Frequent Pattern Mining Using Mapreduce in Healthcare Data. Bull. Electr. Eng. Inform. 2021, 10, 390–403. [Google Scholar] [CrossRef]
- Qiu, H.; Gu, R.; Yuan, C.; Huang, Y. Yafim: A Parallel Frequent Itemset Mining Algorithm with Spark. In Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, AZ, USA, 19–23 May 2014; pp. 1664–1671. [Google Scholar]
- Rathee, S.; Kaul, M.; Kashyap, A. R-Apriori: An Efficient Apriori Based Algorithm on Spark. In PIKM ′15 Proceedings of the 8th Workshop on Ph.D. Workshop in Information and Knowledge Management, Melbourne, Australia, 19 October 2015; ACM: New York, NY, USA, 2015; pp. 27–34. [Google Scholar]
- Akil, B.; Zhou, Y.; Röhm, U. On the Usability of Hadoop MapReduce, Apache Spark & Apache Flink for Data Science. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 303–310. [Google Scholar]
- Patil, S.D.; Deshmukh, R.R.; Kirange, D.K. Adaptive Apriori Algorithm for Frequent Itemset Mining. In Proceedings of the 2016 International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 25–27 November 2016; pp. 7–13. [Google Scholar]
- Qiu, Y.; Lan, Y.-J.; Xie, Q.-S. An Improved Algorithm of Mining from FP-Tree. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), Shanghai, China, 26–29 August 2004; Volume 4, pp. 1665–1670. [Google Scholar]
- Lin, C.-W.; Hong, T.-P.; Lu, W.-H. Linguistic Data Mining with Fuzzy FP-Trees. Expert Syst. Appl. 2010, 37, 4560–4567. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhang, D.; Zhang, M.; Chang, E.Y. Pfp: Parallel Fp-Growth for Query Recommendation. In RecSys ′08 Proceedings of the 2008 ACM conference on Recommender systems, Lausanne, Switzerland, 23–25 October 2008; ACM Press: Lausanne, Switzerland, 2008; p. 107. [Google Scholar]
- Zhou, L.; Zhong, Z.; Chang, J.; Li, J.; Huang, J.Z.; Feng, S. Balanced Parallel FP-Growth with MapReduce. In Proceedings of the 2010 IEEE Youth Conference on Information, Computing and Telecommunications, Beijing, China, 28–30 November 2010; pp. 243–246. [Google Scholar]
- Chen, D.; Lai, C.; Hu, W.; Chen, W.; Zhang, Y.; Zheng, W. Tree Partition Based Parallel Frequent Pattern Mining on Shared Memory Systems. In Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium, Rhodes Island, Greece, 25–29 April 2006; p. 8. [Google Scholar]
- MacQueen, J. Classification and Analysis of Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1967; pp. 281–297. [Google Scholar]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The Fuzzy c-Means Clustering Algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. (Eds.) Finding Groups in Data; Wiley Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990; ISBN 978-0-470-31680-1. [Google Scholar]
- Huang, Z.; Ng, M.K. A Fuzzy K-Modes Algorithm for Clustering Categorical Data. IEEE Trans. Fuzzy Syst. 1999, 7, 446–452. [Google Scholar] [CrossRef]
- Ng, R.T.; Han, J. Efficient and Effective Clustering Methods for Spatial Data Mining. In VLDB′94 Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1994; pp. 144–155. [Google Scholar]
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM Sigmod Rec. 1996, 25, 103–114. [Google Scholar] [CrossRef]
- Guha, S.; Rastogi, R.; Shim, K. CURE: An Efficient Clustering Algorithm for Large Databases. ACM Sigmod Rec. 1998, 27, 73–84. [Google Scholar] [CrossRef]
- Guha, S.; Rastogi, R.; Shim, K. ROCK: A Robust Clustering Algorithm for Categorical Attributes. Inf. Syst. 2000, 25, 345–366. [Google Scholar] [CrossRef]
- Karypis, G.; Han, E.-H.; Kumar, V. Chameleon: Hierarchical Clustering Using Dynamic Modeling. Computer 1999, 32, 68–75. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. Density-Based Spatial Clustering of Applications with Noise. In Proceedings of the Second International Conference Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Volume 240. [Google Scholar]
- Hinneburg, A.; Keim, D.A. An Efficient Approach to Clustering in Large Multimedia Databases with Noise; Bibliothek der Universität Konstanz: Konstanz, Germany, 1998; Volume 98. [Google Scholar]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. ACM Sigmod Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Muntz, R. STING: A Statistical Information Grid Approach to Spatial Data Mining. Vldb 1997, 97, 186–195. [Google Scholar]
- Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In SIGMOD ′98 Proceedings of the 1998 ACM SIGMOD international conference on Management of data, Seattle, WA, USA, 1-4 June 1998; ACM: New York, NY, USA, 1998; pp. 94–105. [Google Scholar]
- Sheikholeslami, G.; Chatterjee, S.; Zhang, A. WaveCluster: A Wavelet-Based Clustering Approach for Spatial Data in Very Large Databases. VLDB J. 2000, 8, 289–304. [Google Scholar] [CrossRef]
- Arifovic, J. Genetic Algorithm Learning and the Cobweb Model. J. Econ. Dyn. Control. 1994, 18, 3–28. [Google Scholar] [CrossRef]
- Reynolds, D.A. Gaussian Mixture Models. Encycl. Biom. 2009, 741, 659–663. [Google Scholar]
- Kohonen, T. Self-Organizing Maps; Springer Science & Business Media: Berlin, Germany, 2012; Volume 30, ISBN 3-642-56927-7. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Wasserman, W. Applied Linear Regression Models; McGraw-Hill/Irwin: New York, NY, USA, 2004; Volume 4. [Google Scholar]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398, ISBN 0-470-58247-2. [Google Scholar]
- Jain, G.; Mallick, B. A Study of Time Series Models ARIMA and ETS. SSRN J. 2017. [Google Scholar] [CrossRef]
- Gardner, E.S. Exponential Smoothing: The State of the Art. J. Forecast. 1985, 4, 1–28. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B.; Snyder, R.D.; Grose, S. A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods. Int. J. Forecast. 2002, 18, 439–454. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1994; ISBN 978-0-13-060774-4. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative Performance Analysis of K-Nearest Neighbour (KNN) Algorithm and Its Different Variants for Disease Prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.R. Discovering Rules by Induction from Large Collections of Examples. Expert Syst. Micro Electron. Age 1979. [Google Scholar]
- Quinlan, J.R. C4. 5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0-08-050058-7. [Google Scholar]
- Lewis, R.J. An Introduction to Classification and Regression Tree (CART) Analysis. In Proceedings of the Annual meeting of the society for academic emergency medicine, San Francisco, CA, USA, 22–25 May 2000; Volume 14. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.; Abe, N. A Short Introduction to Boosting. J.-Jpn. Soc. Artif. Intell. 1999, 14, 1612. [Google Scholar]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In KDD ′16 Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017; Volume 30, pp. 3149–3157. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- Sanger, T.D. Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network. Neural Netw. 1989, 2, 459–473. [Google Scholar] [CrossRef]
- Murat, H.S. A brief review of feed-forward neural networks. Commun. Fac. Sci. Univ. Ank. 2006, 50, 11–17. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Gopalsamy, K.; He, X. Stability in Asymmetric Hopfield Nets with Transmission Delays. Phys. D Nonlinear Phenom. 1994, 76, 344–358. [Google Scholar] [CrossRef]
- Ackley, D.H.; Hinton, G.E.; Sejnowski, T.J. A Learning Algorithm for Boltzmann Machines. Cogn. Sci. 1985, 9, 147–169. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Salinas, D.; Flunkert, V.; Gasthaus, J. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Rangapuram, S.S.; Seeger, M.W.; Gasthaus, J.; Stella, L.; Wang, Y.; Januschowski, T. Deep State Space Models for Time Series Forecasting. Adv. Neural Inf. Process. Syst. 2018, 31, 7796–7805. [Google Scholar]
- Wen, R.; Torkkola, K.; Narayanaswamy, B.; Madeka, D. A Multi-Horizon Quantile Recurrent Forecaster. arXiv 2017, arXiv:1711.11053. [Google Scholar]
- Lu, W.; Li, J.; Li, Y.; Sun, A.; Wang, J. A CNN-LSTM-Based Model to Forecast Stock Prices. Complexity 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. A Deep CNN-LSTM Model for Particulate Matter (PM2. 5) Forecasting in Smart Cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-Y.; Cho, S.-B. Predicting Residential Energy Consumption Using CNN-LSTM Neural Networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar] [CrossRef]
- Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.; Yan, X. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; Eickhoff, C. A Transformer-Based Framework for Multivariate Time Series Representation Learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 2114–2124. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series Forecasting. arXiv 2020, arXiv:1905.10437. [Google Scholar]
- Williams, H.P. Model Building in Mathematical Programming; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 1-118-50618-9. [Google Scholar]
- Klee, V.; Minty, G.J. How Good Is the Simplex Algorithm. Inequalities 1972, 3, 159–175. [Google Scholar]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Dennis, J.; Moré, J.J. Quasi-Newton Methods, Motivation and Theory. SIAM Rev. 1977, 19, 46–89. [Google Scholar] [CrossRef]
- Shewchuk, J.R. An Introduction to the Conjugate Gradient Method without the Agonizing Pain; Carnegie-Mellon University, Department of Computer Science Pittsburgh: Pittsburgh, PA, USA, 1994. [Google Scholar]
- DeVore, R.A.; Temlyakov, V.N. Some Remarks on Greedy Algorithms. Adv. Comput. Math. 1996, 5, 173–187. [Google Scholar] [CrossRef]
- Johnson, D.S.; Papadimitriou, C.H.; Yannakakis, M. How Easy Is Local Search? J. Comput. Syst. Sci. 1988, 37, 79–100. [Google Scholar] [CrossRef]
- Tsamardinos, I.; Brown, L.E.; Aliferis, C.F. The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Mach. Learn. 2006, 65, 31–78. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Glover, F.; Laguna, M. Tabu Search. In Handbook of Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 1998; pp. 2093–2229. [Google Scholar]
- Nair, V.; Bartunov, S.; Gimeno, F.; von Glehn, I.; Lichocki, P.; Lobov, I.; O’Donoghue, B.; Sonnerat, N.; Tjandraatmadja, C.; Wang, P.; et al. Solving Mixed Integer Programs Using Neural Networks. arXiv 2021, arXiv:2012.13349. [Google Scholar]
- Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 7 December 2015; Volume 2, pp. 2692–2700. [Google Scholar]
- Schuetz, M.J.A.; Brubaker, J.K.; Katzgraber, H.G. Combinatorial Optimization with Physics-Inspired Graph Neural Networks. Nat. Mach. Intell. 2022, 4, 367–377. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep Reinforcement Learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Boute, R.N.; Gijsbrechts, J.; van Jaarsveld, W.; Vanvuchelen, N. Deep Reinforcement Learning for Inventory Control: A Roadmap. Eur. J. Oper. Res. 2021, 298, 401–412. [Google Scholar] [CrossRef]
- de Oliveira, M.P.V.; McCormack, K.; Trkman, P. Business Analytics in Supply Chains—The Contingent Effect of Business Process Maturity. Expert Syst. Appl. 2012, 39, 5488–5498. [Google Scholar] [CrossRef]
- Wu, P.-J.; Huang, P.-C. Business Analytics for Systematically Investigating Sustainable Food Supply Chains. J. Clean. Prod. 2018, 203, 968–976. [Google Scholar] [CrossRef]
- Trkman, P.; McCormack, K.; de Oliveira, M.P.V.; Ladeira, M.B. The Impact of Business Analytics on Supply Chain Performance. Decis. Support Syst. 2010, 49, 318–327. [Google Scholar] [CrossRef]
- Nam, D.; Lee, J.; Lee, H. Business Analytics Use in CRM: A Nomological Net from IT Competence to CRM Performance. Int. J. Inf. Manag. 2019, 45, 233–245. [Google Scholar] [CrossRef]
- Acito, F.; Khatri, V. Business Analytics: Why Now and What Next? Bus. Horiz. 2014, 57, 565–570. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Fu, Z.; Zhong, K.; Niu, H. A Study on Early Warnings of Financial Crisis of Chinese Listed Companies Based on DEA–SVM Model. Mathematics 2022, 10, 2142. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, M.; Yang, Z.; Song, X. Real Estate Risk Measurement and Early Warning Based on PSO-SVM. Socio-Econ. Plan. Sci. 2021, 77, 101001. [Google Scholar] [CrossRef]
- Jianying, F.; Bianyu, Y.; Xin, L.; Dong, T.; Weisong, M. Evaluation on Risks of Sustainable Supply Chain Based on Optimized BP Neural Networks in Fresh Grape Industry. Comput. Electron. Agric. 2021, 183, 105988. [Google Scholar] [CrossRef]
- Jiang, H.; Ching, W.-K.; Yiu, K.F.C.; Qiu, Y. Stationary Mahalanobis Kernel SVM for Credit Risk Evaluation. Appl. Soft Comput. 2018, 71, 407–417. [Google Scholar] [CrossRef]
- Gerrard, M.; Gibbons, F.X.; Houlihan, A.E.; Stock, M.L.; Pomery, E.A. A Dual-Process Approach to Health Risk Decision Making: The Prototype Willingness Model. Dev. Rev. 2008, 28, 29–61. [Google Scholar] [CrossRef]
- Pröllochs, N.; Feuerriegel, S. Business Analytics for Strategic Management: Identifying and Assessing Corporate Challenges via Topic Modeling. Inf. Manag. 2020, 57, 103070. [Google Scholar] [CrossRef]
- Appelbaum, D.; Kogan, A.; Vasarhelyi, M.; Yan, Z. Impact of Business Analytics and Enterprise Systems on Managerial Accounting. Int. J. Account. Inf. Syst. 2017, 25, 29–44. [Google Scholar] [CrossRef]
- Nielsen, S. The Impact of Business Analytics on Management Accounting. SSRN J. 2015. [Google Scholar] [CrossRef]
- Rikhardsson, P.; Yigitbasioglu, O. Business Intelligence & Analytics in Management Accounting Research: Status and Future Focus. Int. J. Account. Inf. Syst. 2018, 29, 37–58. [Google Scholar] [CrossRef]
- van der Togt, J.; Rasmussen, T.H. Toward Evidence-Based HR. JOEPP 2017, 4, 127–132. [Google Scholar] [CrossRef]
- Margherita, A. Human Resources Analytics: A Systematization of Research Topics and Directions for Future Research. Hum. Resour. Manag. Rev. 2022, 32, 100795. [Google Scholar] [CrossRef]
- Pape, T. Prioritising Data Items for Business Analytics: Framework and Application to Human Resources. Eur. J. Oper. Res. 2016, 252, 687–698. [Google Scholar] [CrossRef]
- Stadler, J.G.; Donlon, K.; Siewert, J.D.; Franken, T.; Lewis, N.E. Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards. Big Data 2016, 4, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, D.; Piazza, F. Analysis and Forecast of COVID-19 Spreading in China, Italy and France. Chaos Solitons Fractals 2020, 134, 109761. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.J.; Marsolo, K.A.; Froehle, C.M. Applications of Business Analytics in Healthcare. Bus. Horiz. 2014, 57, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Commission, E. A New Circular Economy Action Plan; Office of the European Union Brussels: Brussels, Belgium, 2020; pp. 1–19. [Google Scholar]
- Kristoffersen, E.; Mikalef, P.; Blomsma, F.; Li, J. The Effects of Business Analytics Capability on Circular Economy Implementation, Resource Orchestration Capability, and Firm Performance. Int. J. Prod. Econ. 2021, 239, 108205. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Mikalef, P.; Blomsma, F.; Li, J. Towards a Business Analytics Capability for the Circular Economy. Technol. Forecast. Soc. Change 2021, 171, 120957. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, Y.; Zhang, N.; Huang, T. An Optimization Model for Green Supply Chain Management by Using a Big Data Analytic Approach. J. Clean. Prod. 2017, 142, 1085–1097. [Google Scholar] [CrossRef]
- Kaur, M.; Kang, S. Market Basket Analysis: Identify the Changing Trends of Market Data Using Association Rule Mining. Procedia Comput. Sci. 2016, 85, 78–85. [Google Scholar] [CrossRef]
- Videla-Cavieres, I.F.; Ríos, S.A. Extending Market Basket Analysis with Graph Mining Techniques: A Real Case. Expert Syst. Appl. 2014, 41, 1928–1936. [Google Scholar] [CrossRef]
- Griva, A.; Bardaki, C.; Pramatari, K.; Papakiriakopoulos, D. Retail Business Analytics: Customer Visit Segmentation Using Market Basket Data. Expert Syst. Appl. 2018, 100, 1–16. [Google Scholar] [CrossRef]
- Hwangbo, H.; Kim, Y.S.; Cha, K.J. Recommendation System Development for Fashion Retail E-Commerce. Electron. Commer. Res. Appl. 2018, 28, 94–101. [Google Scholar] [CrossRef]
- Isinkaye, F.O.; Folajimi, Y.O.; Ojokoh, B.A. Recommendation Systems: Principles, Methods and Evaluation. Egypt. Inform. J. 2015, 16, 261–273. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.; Ahn, H. Predicting Corporate Financial Sustainability Using Novel Business Analytics. Sustainability 2018, 11, 64. [Google Scholar] [CrossRef]
- Troilo, M.; Bouchet, A.; Urban, T.L.; Sutton, W.A. Perception, Reality, and the Adoption of Business Analytics: Evidence from North American Professional Sport Organizations. Omega 2016, 59, 72–83. [Google Scholar] [CrossRef]
- Wang, L. Heterogeneous Data and Big Data Analytics. ACIS 2017, 3, 8–15. [Google Scholar] [CrossRef] [Green Version]
Technique | Advantages | Disadvantages | ||
---|---|---|---|---|
Descriptive analytics techniques | Data visualization | Traditional method |
|
|
Visualization tools |
|
| ||
Data analysis | Association analysis |
|
| |
Cluster analysis |
|
| ||
Predictive analytics techniques | Statistical techniques | Regression model |
|
|
Time series model |
|
| ||
Machine learning and artificial intelligence techniques | support vector machine |
|
| |
Nearest neighbor |
|
| ||
Decision tree |
|
| ||
Ensemble learning |
|
| ||
Artificial Neural Network |
|
| ||
Deep learning |
|
| ||
Prescriptive analytics techniques | Traditional optimization algorithm | Simplex algorithm |
|
|
Gradient Descent Method |
|
| ||
Quasi-Newton Method |
|
| ||
Heuristic algorithm |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, O.; Chen, J. A Review on Business Analytics: Definitions, Techniques, Applications and Challenges. Mathematics 2023, 11, 899. https://doi.org/10.3390/math11040899
Liu S, Liu O, Chen J. A Review on Business Analytics: Definitions, Techniques, Applications and Challenges. Mathematics. 2023; 11(4):899. https://doi.org/10.3390/math11040899
Chicago/Turabian StyleLiu, Shiyu, Ou Liu, and Junyang Chen. 2023. "A Review on Business Analytics: Definitions, Techniques, Applications and Challenges" Mathematics 11, no. 4: 899. https://doi.org/10.3390/math11040899