Improved Properties of Positive Solutions of Higher Order Differential Equations and Their Applications in Oscillation Theory
Abstract
:1. Introduction
- (H1)
- and , where
- (H2)
- and
- (H3)
- for and for
2. Preliminary Lemmas
- (D1)
- and are positive, and is negative;
- (D2)
- and are positive, and is negative;
- (D3)
- are positive, for
3. Oscillation Criteria
4. Criterion of an Iterative Nature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladde, G.; Lakshmikantham, S.V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhong, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Dynamic Equations; Series in Mathematical Analysis and Applications; Taylor & Francis Ltd.: London, UK, 2003; Volume 5. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and oscillation: Theory for functional differential equations. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 267. [Google Scholar]
- Tunç, C.; Tunç, O. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Res. 2016, 7, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Graef, J.R.; Beldjerd, D.; Remili, M. Some New Stability, Boundedness, and Square Integrability Conditions for Third-Order Neutral Delay Differential Equations. Commun. Math. Anal. 2019, 22, 76–89. [Google Scholar]
- Saker, S. Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders; LAP Lambert Academic Publishing: Saarbruecken, Germany, 2010. [Google Scholar]
- Baculíková, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Baculíková, B. Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Differ. Equ. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Koplatadze, R.; Kvinkadze, G.; Stavroulakis, I.P. Properties A and B of n-th order linear differential equations with deviating argument. Georgian Math. J. 1999, 6, 553–566. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Appl. Anal. 2001, 262, 601–622. [Google Scholar] [CrossRef]
- Bazighifan, O.; Minhos, F.; Moaaz, O. Sufficient conditions for oscillation of fourth-order neutral differential equations with distributed deviating arguments. Axioms 2020, 9, 39. [Google Scholar] [CrossRef]
- Grace, S.R. Oscillation theorems for nth-order differential equations with deviating arguments. J. Math. Appl. Anal. 1984, 101, 268–296. [Google Scholar] [CrossRef]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the oscillatory behavior of a class of fourth-order nonlinear differential equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef]
- Xu, Z.; Xia, Y. Integral averaging technique and oscillation of certain even order delay differential equations. J. Math. Appl. Anal. 2004, 292, 238–246. [Google Scholar] [CrossRef]
- Zhang, B.G. Oscillation of even order delay differential equations. J. Math. Appl. Anal. 1987, 127, 140–150. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. J. Math. Sci. 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Moaaz, O.; Cesarano, C.; Askar, S. Asymptotic and oscillatory properties of noncanonical delay differential equations. Fractal Fract. 2021, 5, 259. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Muhib, A.; Moaaz, O.; Cesarano, C.; Alsallami, S.A.M.; Abdel-Khalek, S.; Elamin, A.E.A.M.A. New monotonic properties of positive solutions of higher-order delay differential equations and their applications. Mathematics 2022, 10, 1786. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Asymptotic behavior of higher-order quasilinear neutral differential equations. Abstr. Appl. Anal. 2014, 2014, 395368. [Google Scholar] [CrossRef]
- Ramos, H.; Moaaz, O.; Muhib, A.; Awrejcewicz, J. More Effective Results for Testing Oscillation of Non-Canonical NDDEs. Mathematics 2021, 9, 1114. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Moaaz, O.; Ramos, H.; Muhib, A. Improved criteria for oscillation of noncanonical neutral differential equations of even order. Adv. Differ. Equ. 2021, 2021, 412. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Methods Appl. Sci. 2020, 43, 10041–10053. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp results for oscillation of second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2023, 1–23. [Google Scholar] [CrossRef]
- Džurina, J.; Grace, S.R.; Jadlovská, I.; Li, T. Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachrichten 2020, 293, 910–922. [Google Scholar] [CrossRef]
- Moaaz, O.; Albalawi, W. Asymptotic behavior of solutions of even-order di§erential equations with several delays. Fractal Fract. 2022, 6, 87. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; Moaaz, O. Improved Properties of Positive Solutions of Higher Order Differential Equations and Their Applications in Oscillation Theory. Mathematics 2023, 11, 924. https://doi.org/10.3390/math11040924
Almarri B, Moaaz O. Improved Properties of Positive Solutions of Higher Order Differential Equations and Their Applications in Oscillation Theory. Mathematics. 2023; 11(4):924. https://doi.org/10.3390/math11040924
Chicago/Turabian StyleAlmarri, Barakah, and Osama Moaaz. 2023. "Improved Properties of Positive Solutions of Higher Order Differential Equations and Their Applications in Oscillation Theory" Mathematics 11, no. 4: 924. https://doi.org/10.3390/math11040924
APA StyleAlmarri, B., & Moaaz, O. (2023). Improved Properties of Positive Solutions of Higher Order Differential Equations and Their Applications in Oscillation Theory. Mathematics, 11(4), 924. https://doi.org/10.3390/math11040924