Some Quantum Integral Inequalities for (p, h)-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Bangerezaka, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar]
- Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Helidelberg, Germany, 2012. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Ernst, T. A History of q-Calculus and a New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. J. Comput. Appl. Math. 2002, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Korus, P.; Valdes, J.E.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Hermite, C. Sur deux limites d’une integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
- Hadamard, J. Etude sur les fonctions entiees et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Kunt, M.; Latif, M.A.; Iscan, I.; Dragomir, S.S. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Kalsoom, H.; Wu, J.D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Idrees, M.; Baleanu, D.; Chu, Y.-M. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of functions. J. Funct. Spaces 2020, 2020, 3720798. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Wannalookkhee, F.; Nonlaopon, K.; Ntouyas, S.K.; Sarikaya, M.Z.; Budak, H.; Ali, M.A. Some new quantum Hermite–Hadamard inequalities for co-ordinated convex functions. Mathematics 2022, 10, 1962. [Google Scholar] [CrossRef]
- Fang, Z.B.; Shi, R. On the (p, h)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 2014, 45. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantalo, J.; Wannalookkhee, F.; Nonlaopon, K.; Budak, H. Some Quantum Integral Inequalities for (p, h)-Convex Functions. Mathematics 2023, 11, 1072. https://doi.org/10.3390/math11051072
Kantalo J, Wannalookkhee F, Nonlaopon K, Budak H. Some Quantum Integral Inequalities for (p, h)-Convex Functions. Mathematics. 2023; 11(5):1072. https://doi.org/10.3390/math11051072
Chicago/Turabian StyleKantalo, Jirawat, Fongchan Wannalookkhee, Kamsing Nonlaopon, and Hüseyin Budak. 2023. "Some Quantum Integral Inequalities for (p, h)-Convex Functions" Mathematics 11, no. 5: 1072. https://doi.org/10.3390/math11051072
APA StyleKantalo, J., Wannalookkhee, F., Nonlaopon, K., & Budak, H. (2023). Some Quantum Integral Inequalities for (p, h)-Convex Functions. Mathematics, 11(5), 1072. https://doi.org/10.3390/math11051072