Next Article in Journal
Adaptive Backstepping Terminal Sliding Mode Control of Nonlinear System Using Fuzzy Neural Structure
Next Article in Special Issue
Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized (E, h)-Convexity
Previous Article in Journal
Blockchain-Based Practical and Privacy-Preserving Federated Learning with Verifiable Fairness
Previous Article in Special Issue
Fixed Points on Covariant and Contravariant Maps with an Application
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps

1
Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia
2
Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, El-Shorouk City 11837, Egypt
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(5), 1093; https://doi.org/10.3390/math11051093
Submission received: 12 January 2023 / Revised: 15 February 2023 / Accepted: 20 February 2023 / Published: 22 February 2023

Abstract

:
We introduce the conformable fractional (CF) noninstantaneous impulsive stochastic evolution equations with fractional Brownian motion (fBm) and Poisson jumps. The approximate controllability for the considered problem was investigated. Principles and concepts from fractional calculus, stochastic analysis, and the fixed-point theorem were used to support the main results. An example is applied to show the established results.

1. Introduction

The field of fractional calculus is constantly expanding, and applications range from engineering and natural phenomena to financial perspectives (see [1,2,3,4,5,6,7]). Recently, there seems to be much enthusiasm for the use of stochastic differential equations to describe a variety of phenomena in population dynamics, physics, electrical engineering, geography, psychology, biochemistry, and other areas of physics and technology (see [8,9,10,11,12,13,14]). Stochastic impulsive differential equations arise in a very natural way as mathematical models (see [15,16,17,18,19,20]). The introduction of drugs into the bloodstream and the consequent absorption into the body are gradual and continuous processes that can be described by noninstantaneous impulsive differential equations (see [21,22]). Now, several authors have discussed different types of controllability for fractional stochastic systems (see [23,24,25,26,27,28,29]). To the best of our knowledge, the approximate controllability of CF noninstantaneous impulsive stochastic evolution equations via fBm and Poisson jump mentioned in this study is an area of research that appears to give extra incentive for completing this research.
Assume that the CF noninstantaneous impulsive stochastic evolution equation via fBm, Poisson jump, and the control function has the following form:
D £ N ( ) + Δ N ( ) = M ( , N ( ) , N ( 1 ( ) ) , , N ( m ( ) ) ) + B u ( ) + 0 V ( k , N ( k ) , N ( 𝚥 1 ( k ) ) , , N ( 𝚥 k ( k ) ) ) d ω ( k ) + Ω ( , N ( ) , N ( c 1 ( ) ) , , N ( c p ( ) ) ) d B H d + F ( , N ( ) , N ( 𝚤 1 ( ) ) , , N ( 𝚤 u ( ) ) , f ) W ( d , d f ) , ( k i , i + 1 ] , i [ 0 , m ] N ( ) = i ( , N ( ) ) , ( i , k i ] , i [ 1 , m ] N ( 0 ) = N 0 ,
where D £ is the conformable fractional derivative (CFD) of order 1 2 < £ < 1 and Δ generates semigroup Θ ( ) , 0 , on . Here, and G are separable Hilbert spaces with · and u ( · ) L 2 ( Υ , U ) is the control function, where L 2 ( Υ , U ) is the Hilbert space of control functions with U a Hilbert space. B is a bounded linear operator from U into , and i is a noninstantaneous impulsive function for all i = 1 , 2 , , m . Suppose that the time interval is Υ = ( 0 , b ] , where i , k i are fixed numbers verifying 0 = k 0 < 1 k 1 2 < < k m 1 < m k m m + 1 = b . Assume { ω ( ) } 0 is a K-Wiener process on ( F , S , { S } 0 , P ) with values in G and { B H ( ) } 0 is fBm with Hurst parameter H ( 1 2 , 1 ) defined on ( F , S p , { S } 0 , P ) with values in Q ; Q is a Hilbert space with . . In this paper, L ( G , ) and L ( Q , ) are the space of all bounded linear operators from G into and from Q into , respectively, with . . M , V , Ω , ℧, and i are defined in Section 2.
The contributions of the present work are as follows:
  • The conformable fractional noninstantaneous impulsive stochastic evolution equation with fractional Brownian motion and Poisson jump is presented.
  • To the best of the author’s knowledge, there has not been any research that has studied the approximate controllability of (1).
  • An example is applied to show the established results.

2. Preliminaries

Here, we collect the basic concepts, definitions, theorems, and lemmas that are used in the paper.
Definition 1
(See [7]). The CFD of order 0 < £ < 1 of z ( ) for > 0 is defined as
d £ z ( ) d £ = lim ν 0 z ( + ν 1 £ ) z ( ) ν .
Furthermore, the conformable integral is defined as
I £ ( z ) ( ) = 0 k £ 1 z ( k ) d k .
Suppose ( F , S , P ) is a full probability area connected with a normal filtration S p , [ 0 , b ] , where S n is the σ -algebra generated by random variables { ω ( k ) , B H ( k ) , s [ 0 , b ] } and all P -null sets. Let ( F , ξ , ς ( d f ) ) be a σ -finite measurable space. The stationary Poisson point process ( p ) 0 is defined on ( F , S , P ) with values in F and characteristic measure ς . The counting measure of p is denoted by ζ ( , d f ) such that W ( , ϑ ) : = E ( ζ ( , ϑ ) ) = ς ( ϑ ) for ϑ ξ . Define W ( , d f ) : = ζ ( , d f ) λ ( d f ) , the Poisson martingale generated by p .
Let Z L ( Q , Q ) be an operator defined by Z x n = λ n x n with T r ( Z ) = n = 1 λ n < , where λ n 0 ( n = 1 , 2 , ) are non-negative real numbers and { x n } ( n = 1 , 2 , ) is a complete orthonormal basis in Q.
We introduce the space L 2 0 : = L 2 0 ( Q , ) of all A-Hilbert–Schmidt operators μ : Q .
μ L ( Q , ) is called a A-Hilbert–Schmidt operator, if
μ L 2 0 2 : = n = 1 λ n μ N n 2 < .
Lemma 1
(see [30]). If μ : [ 0 , b ] L 2 0 ( Q , ) satisfies 0 b μ ( k ) L 2 0 2 < then
E 0 μ ( k ) d B H ( k ) 2 2 H 2 H 1 0 μ ( k ) L 2 0 2 d k .
Theorem 1
(see [31]). Assume ( ¥ ; A ) is a compact metric space. For a family of functions Z C ( ¥ ) , then the following statements are equivalent:
(i) 
Z is relatively compact;
(ii) 
Z is equicontinuous and uniformly bounded.
Through this paper, let L 2 ( F , ) be a Banach space with
N ( · ) L 2 ( F , ) 2 = E N ( . , ω ) 2 ,
where E ( N ) = F N ( ω ) d P . Assume C ( Υ , L 2 ( F , ) ) , from Υ into L 2 ( F , ) , is the Banach space of all continuous functions and satisfies sup Υ E N ( ) 2 < .
Define ϝ = { · : N ( ) C ( Υ , L 2 ( F , ) ) } , with
· ϝ 2 = sup Υ E N ( ) 2 .
Obviously, ϝ is a Banach space.
We require the following hypotheses:
( A 1 ) M : Υ × m + 1 verifies the following:
(i)
M : Υ × m + 1 is continuous;
(ii)
ε N ; ε > 0 e ε ( · ) : Υ R + such that
sup N 0 2 , , N n 2 ε E M ( , N 0 , N 1 , , N m ) 2 e ε ( ) ,
the function k e ε ( k ) L 1 ( ( 0 , b ] , R + ) and ∃ a χ 1 > 0 such that
lim ε inf 0 e ε ( k ) d k ε = χ 1 < , ( 0 , b ] .
( A 2 ) V : Υ × k + 1 L ( G , ) verifies the following:
(i)
Υ , the function V ( , . ) : k + 1 L ( G , ) is continuous and ( N 0 , N 1 , , N n ) n + 1 ; the function V ( . , N 0 , N 1 , , N k ) : J L ( G , ) is S -measurable;
(ii)
ε N ; ε > 0 r ε ( · ) : ( 0 , b ] R + such that
sup N 0 2 , , N n 2 ε 0 E V ( k , N 0 , N 1 , , N k ) A 2 d k r ε ( ) ,
the function k r ε ( k ) L 1 ( ( 0 , b ] , R + ) and ∃ a χ 2 > 0 such that
lim ε inf 0 r ε ( k ) d k ε = χ 2 < , ( 0 , b ] .
( A 3 ) Ω : Υ × p + 1 L 2 0 ( Q , ) satisfies the following:
(i)
Υ , the function Ω ( , . ) : p + 1 L 2 0 ( Q , ) is continuous and ∀ ( N 0 , N 1 , , N p ) p + 1 ; the function Ω ( . , N 0 , N 1 , , N p ) : J L 2 0 ( Q , ) is S -measurable;
(ii)
ε N ; ε > 0 r ¯ ε ( · ) : ( 0 , b ] R + such that
sup N 0 2 , , N n 2 ε E Ω ( , N 0 , N 1 , , N p ) L 2 0 2 r ¯ ε ( ) ,
k r ¯ ε ( k ) L 1 ( ( 0 , b ] , R + ) and ∃ a χ 3 > 0 such that
lim ε inf 0 r ¯ ε ( k ) d k ε = χ 3 < , ( 0 , b ] ,
( A 4 ) : Υ × u + 1 × F satisfies the following:
(i)
: Υ × u + 1 × F is continuous;
(ii)
ε N ; ε > 0 q ε ( · ) : Υ R + such that
sup N 0 2 , , N n 2 ε F E ( , N 0 , N 1 , , N u , f ) 2 λ ( d f ) q ε ( ) ,
k q ε ( k ) L 1 ( ( 0 , ] , R + ) , and ∃ a χ 4 > 0 such that
lim r inf 0 q ε ( k ) d k ε = χ 4 < , ( 0 , b ] .
( A 5 ) i : ( i , k i ] × is continuous and verifies the following:
(i)
ϱ 3 > 0 , such that
E i ( , N ) 2 ϱ 3 E N 2 , N ; ( i , k i ] , i = 1 , 2 , , m ;
(ii)
ϱ 4 > 0 , such that
E i ( , N 1 ) i ( , N 2 ) 2 ϱ 4 E N 1 N 2 2 , N 1 , N 2 ; ( i , k i ] , i = 1 , 2 , , m .
( A 6 ) Δ generates a compact semigroup { Θ ( ) , 0 } in .
Definition 2
(see [32]). N ( ) : Υ is a mild solution of ( 1 ) if N 0 s [ 0 , b ) the function k £ 1 M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) is integrable and
N ( ) = Θ £ £ N 0 + 0 k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k + 0 k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k + 0 k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + 0 k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) + 0 k £ 1 Θ £ k £ £ B u ( k ) d k , ( 0 , 1 ] i ( , N ( ) ) , ( i , k i ] , i = 1 , 2 , , m Θ £ k i £ £ i ( k i , N ( k i ) ) + k i k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k + k i k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k + k i k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + k i k £ 1 Θ £ k £ £ V ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) + k i k £ 1 Θ £ k £ £ B u ( k ) d k , ( k i , i + 1 ] , i = 1 , 2 , , m ,
is verified.

3. Approximate Controllability

Here, we investigate the approximate controllability of (1).
Consider the linear conformable fractional evolution equation in the following form:
D £ N ( ) + Δ N ( ) = B u ( ) , ( 0 , b ] N ( 0 ) = N 0 .
We present the operators associated with (3) as
Ξ 0 b = 0 b k £ 1 Θ b £ k £ £ B B * Θ * b £ k £ £ d k ,
and Φ ( b , Ξ 0 b ) = ( b I + Ξ 0 b ) 1 , b > 0 , where the adjoint of B and Θ b £ k £ £ are denoted by B * and Θ * b £ k £ £ , respectively.
The state value of ( 1 ) at terminal state b , corresponding to the control u and the initial value N 0 , is denoted by N ( b ; N 0 , u ) . Furthermore, the reachable set of ( 1 ) at terminal time b is denoted by Φ ( b , N 0 ) = { N ( b ; N 0 , u ) : u L 2 ( Υ , U ) } , and its closure in is Φ ( b , N 0 ) ¯ .
Definition 3
([33]). Let ( 1 ) be approximately controllable on Υ if Φ ( b , N 0 ) ¯ = L 2 ( F , ) .
Lemma 2
([33]). The linear system ( 3 ) is approximately controllable on Υ if and only if
x ( x I + Φ 0 b ) 1 0 as x 0 + .
Lemma 3.
N ¯ b L 2 ( F , ) ψ ¯ and φ ¯ L 2 ( F ; L 2 ( Υ ; L 2 0 ) ) such that
N ¯ b = E N ¯ b + 0 b ψ ¯ ( ) d ω ( ) + 0 b φ ¯ ( ) d B H ( ) .
We define the control function, for any δ > 0 and N ¯ b L 2 ( F , ) , in the following form:
u ρ ( ) = B * Θ * b £ £ £ ( x I + Φ 0 b ) 1 [ E N ¯ b + 0 b ψ ¯ ( k ) d ω ( k ) + 0 b φ ¯ ( k ) d B H ( k ) Θ b £ £ N 0 0 b k £ 1 Θ b £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k 0 b k £ 1 Θ b £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k 0 b k £ 1 Θ b £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 0 b k £ 1 Θ b £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) ] , ( 0 , 1 ] B * Θ * b £ £ £ ( x I + Φ 0 b ) 1 [ E N ¯ b + 0 b ψ ¯ ( k ) d ω ( k ) + 0 b φ ¯ ( k ) d B H ( k ) Θ £ k i £ £ i ( k i , N ( k i ) ) k i b k £ 1 Θ b £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k k i b k £ 1 Θ b £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k k i b k £ 1 Θ b £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) k i b k £ 1 Θ b £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) ] , ( k i , i + 1 ] .
In this paper, we set ϱ = sup · Υ Θ ( · ) , ϱ B = B and ϱ B * = B * .
Theorem 2.
Suppose ( A 1 ) ( A 6 ) holds, then ( 1 ) has a mild solution on Υ , such that
36 ϱ 2 1 + ϱ 2 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 ϱ 3 + b 2 £ 1 2 £ 1 χ 1 + T r ( Z ) b 2 £ 1 2 £ 1 χ 2 + 2 H b 2 ( H + £ 1 ) 2 £ 1 χ 3 + b 2 £ 1 2 £ 1 χ 4 + ϱ 3 < 1 ,
and γ 1 = 8 ϱ 2 b 2 £ 2 £ 1 + ϱ 4 + 4 ϱ 2 ϱ 4 < 1 .
Proof. 
Consider the map Λ on C ¯ defined by to be verified:
( Λ N ) ( ) = Θ £ £ N 0 + 0 k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k + 0 k £ 1 Θ £ k £ £ B u ( k ) d k + 0 k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k + 0 k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + 0 k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) , ( 0 , 1 ] i ( , N ( ) ) , ( i , k i ] , i = 1 , 2 , , m Θ £ k i £ £ i ( k i , N ( k i ) ) + k i k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k + k i k £ 1 Θ £ k £ £ B u ( k ) d k + k i k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k + k i k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + k i k £ 1 Θ £ k £ £ V ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) , ( k i , i + 1 ] , i = 1 , 2 , , m .
Next, show that Λ from C ¯ into itself has a fixed point. Set B ε = { N C ¯ , N C ¯ 2 ε } , ε > 0 , integer. Therefore, B ε C ¯ is a bounded closed convex set in C ¯ , ε .
From ( A 1 ) and Hölder’s inequality, we obtain
E 0 k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k 2 ϱ 2 b 2 £ 1 2 £ 1 0 sup N 0 2 , , N n 2 ε E M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) 2 d k ϱ 2 b 2 £ 1 2 £ 1 0 e ε ( k ) d k .
It follows that k £ 1 M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) is integrable on Υ , and by Bochner’s theorem, Λ is defined on B ε .
From ( A 2 ) ( i i ) with Burkholder–Gundy’s inequality, we obtain
E 0 k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( a n ( τ ) ) ) d ω ( τ ) d k 2 T r ( Z ) ϱ 2 b 2 £ 1 2 £ 1 0 sup N 0 2 , , N n 2 ε 0 k E V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) A 2 d τ d k T r ( Z ) ϱ 2 b 2 £ 1 2 £ 1 0 r ε ( k ) d k .
From ( A 3 ) ( i i ) with Burkholder-Gundy’s inequality, this yields
E 0 k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) 2 2 H ϱ 2 b 2 ( H + £ 1 ) 2 £ 1 0 sup N 0 2 , , N n 2 ε E Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) L 2 0 2 d k 2 H ϱ 2 b 2 ( H + £ 1 ) 2 £ 1 0 r ¯ ε ( k ) d k .
From Hölder inequality’s and ( A 4 ) ( i i ) , we obtain
E 0 k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 ϱ 2 b 2 £ 1 2 £ 1 0 sup N 0 2 , , N n 2 ε F E ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) 2 λ d f d k ϱ 2 b 2 £ 1 2 £ 1 0 q ε ( k ) d k .
From Hölder’s inequality and Burkholder–Gundy’s inequality with ( A 1 ) ( A 4 ) , we obtain, for ( 0 , 1 ] ,
E 0 k £ 1 Θ £ k £ £ B u ( k ) d k 2 ϱ 4 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 [ E N ¯ b 2 + T r ( Z ) 0 b E ψ ¯ ( k ) Z 2 d k + 2 H b 2 H 1 0 b E φ ¯ ( k ) L 2 0 2 d k + E N ( 0 ) 2 + b 2 £ 1 2 £ 1 0 e ε ( k ) d k + T r ( Z ) b 2 £ 1 2 £ 1 0 r ε ( k ) d k + 2 H b 2 ( H + £ 1 ) 2 £ 1 0 r ¯ ε ( k ) d k + b 2 £ 1 2 £ 1 0 q ε ( k ) d k ] ,
and for ( k i , i + 1 ] , we obtain
E k i k £ 1 Θ £ k £ £ B u ( k ) d k 2 ϱ 4 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 [ E N ¯ b 2 + T r ( Z ) 0 b E ψ ¯ ( k ) Z 2 d k + 2 H b 2 H 1 0 b E φ ¯ ( k ) L 2 0 2 d k + ε ϱ 3 + b 2 £ 1 2 £ 1 k i e ε ( k ) d k + T r ( Z ) b 2 £ 1 2 £ 1 k i r ε ( k ) d k + 2 H b 2 ( H + £ 1 ) 2 £ 1 k i r ¯ ε ( k ) d k + b 2 £ 1 2 £ 1 k i q ε ( k ) d k ] .
We claim that ε > 0 such that Λ ( B ε ) B ε . If it false, then ε > 0 ; there is a function N ε ( · ) B ε , but Λ ( N ε ) B ε , that is ( Λ N ε ) ( ) C ¯ 2 > ε for some = ( ε ) Υ , where ( ε ) means that is dependent on ε .
From ( A 5 ) and Equations (6)–(9), we have, for ( 0 , 1 ] ,
Λ N ε ϝ 2 36 sup Υ { E Θ £ £ N 0 2 + E 0 k £ 1 Θ £ k £ £ M ( , N ( ) , N ( 1 ( ) ) , , N ( m ( ) ) ) d k 2 + E 0 k £ 1 Θ £ k £ £ B u ( k ) d k 2 + E 0 k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k 2 + E 0 k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) 2 + 0 k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 } 36 ϱ 2 1 + ϱ 2 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 { E N ( 0 ) 2 + b 2 £ 1 2 £ 1 0 b e ε ( k ) d k + T r ( Z ) b 2 £ 1 2 £ 1 0 b r ε ( k ) d k + 2 H b 2 ( H + £ 1 ) 2 £ 1 0 b r ¯ ε ( k ) d k + b 2 £ 1 2 £ 1 0 b q ε ( k ) d k } + ϱ 4 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 [ E N ¯ b 2 + T r ( Z ) 0 b E ψ ¯ ( k ) Z 2 d k + 2 H b 2 H 1 0 b E φ ¯ ( k ) L 2 0 2 d k ] ,
for ( i , k i ]
Λ N ε ϝ 2 sup J E i ( , N ( ) ) 2 ϱ 3 ε .
and for ( k i , i + 1 ]
Λ N ε ϝ 2 36 sup J { E Θ £ k i £ £ i ( k i , N ( k i ) ) 2 + E k i k £ 1 Θ £ k £ £ M ( , N ( ) , N ( 1 ( ) ) , , N ( m ( ) ) ) d k 2 + E k i k £ 1 Θ £ k £ £ B u ( k ) d k 2 + E k i k £ 1 Θ £ k £ £ k i k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k 2 + E k i k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) 2 + k i k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 } 36 ϱ 2 1 + ϱ 2 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 { ε ϱ 3 + b 2 £ 1 2 £ 1 k i b e ε ( k ) d k + T r ( Z ) b 2 £ 1 2 £ 1 k i b r ε ( k ) d k + 2 H ϱ 2 b 2 ( H + £ 1 ) 2 £ 1 k i b r ¯ ε ( k ) d k + b 2 £ 1 2 £ 1 k i b q ε ( k ) d k } + ϱ 4 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 [ E N ¯ b 2 + T r ( Z ) 0 b E ψ ¯ ( k ) Z 2 d k + 2 H b 2 H 1 0 b E φ ¯ ( k ) L 2 0 2 d k ] .
Adding (10), (11) and (12) in the inequality ε ( Λ N ε ) ( ) ϝ 2 , dividing both sides of the inequality by ε , and applying the limit ε + , then
36 ϱ 2 1 + ϱ 2 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 { ϱ 3 + b 2 £ 1 2 £ 1 χ 1 + T r ( Z ) b 2 £ 1 2 £ 1 χ 2 + 2 H b 2 ( H + £ 1 ) 2 £ 1 χ 3 + b 2 £ 1 2 £ 1 χ 4 } + ϱ 3 1 .
This contradicts (5) Hence, for ε > 0 , Λ ( B ε ) B ε . Next, we have to demonstrate that Λ has a fixed point on B ε . We decompose Λ as Λ = Λ 1 + Λ 2 , where Λ 1 and Λ 2 are defined on B ε by
( Λ 1 N ) ( ) = Θ £ £ N 0 + 0 k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k , ( 0 , 1 ] i ( , N ( ) ) , ( i , k i ] , i = 1 , 2 , , m Θ £ k i £ £ i ( k i , N ( k i ) ) + k i k £ 1 Θ £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k , ( k i , i + 1 ] , i = 1 , 2 , , m
( Λ 2 N ) ( ) = k i k £ 1 Θ £ k £ £ B u ( k ) d k + k i k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k + k i k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + k i k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) , ( k i , i + 1 ] , i = 0 , 1 , , m 0 , o t h e r w i s e .
for Υ . Next, we show that Λ 1 is a contraction and Λ 2 is a compact operator. To show that Λ 1 is a contraction, let N 1 , N 2 B ε , then for each Υ and by ( A 1 ) and ( A 5 ) , we obtain
E ( Λ 1 N 1 ) ( ) ( Λ 1 N 2 ) ( ) 2 4 E 0 k £ 1 Θ £ k £ £ [ M ( k , N 1 ( k ) , N 1 ( 1 ( k ) ) , , N 1 ( m ( k ) ) ) M ( k , N 2 ( k ) , N 2 ( 1 ( k ) ) , , N 2 ( m ( k ) ) ) ] d k 2 4 ϱ 2 b 2 £ 2 £ 1 E N 1 ( ) N 2 ( ) 2 , ( 0 , 1 ]
E ( Λ 1 N 1 ) ( ) ( Λ 1 N 2 ) ( ) 2 E i ( , N 1 ( ) ) i ( , N 2 ( ) ) 2 ϱ 4 E N 1 ( ) N 2 ( ) 2 , ( 0 , 1 ] ( i , k i ]
E ( Λ 1 N 1 ) ( ) ( Λ 1 N 2 ) ( ) 2 4 E Θ ( k i ) £ £ ( i ( k i , N 1 ( k i ) ) i ( k i , N 2 ( k i ) ) ) 2 + 4 E k i k £ 1 Θ £ k £ £ [ M ( , N 1 ( ) , N 1 ( 1 ( ) ) , , N 1 ( m ( ) ) ) M ( , N 2 ( ) , N 2 ( 1 ( ) ) , , N 2 ( m ( ) ) ) ] d k 2 4 ϱ 2 ϱ 4 + ϱ 2 b 2 £ 2 £ 1 E N 1 ( ) N 2 ( ) 2 , ( k i , i + 1 ] .
Combining (13), (14) and (15), we obtain
E ( Λ 1 N 1 ) ( ) ( Λ 1 N 2 ) ( ) 2 8 ϱ 2 b 2 £ 2 £ 1 + ϱ 4 + 4 ϱ 2 ϱ 4 E N 1 ( ) N 2 ( ) 2 γ 1 E N 1 ( ) N 2 ( ) 2 .
Taking sup Υ for both sides of the inequality, we obtain
sup J E ( Λ 1 N 1 ) ( ) ( Λ 1 N 2 ) ( ) 2 γ 1 sup J E N 1 ( ) N 2 ( ) 2
Hence,
Λ 1 N 1 Λ 1 N 2 ϝ 2 γ 1 N 1 N 2 ϝ 2 .
Thus, Λ 1 is a contraction.
We show that Λ 2 is compact.
First, we prove the continuity of Λ 2 on B ε .
Let { N n } B ε with N n y in B ε and the control function u ( ) = u ( , N ) . Therefore, for each
k Υ , N n ( k ) N ( k ) with A 2 ( i ) , A 3 ( i ) , and A 4 ( i ) , we obtain
V ( k , N n ( k ) , N n ( 𝚥 1 ( k ) ) , , N n ( 𝚥 k ( k ) ) ) V ( k , N ( k ) , N ( 𝚥 1 ( k ) ) , , N ( 𝚥 k ( k ) ) ) , as n ,
Ω ( k , N n ( k ) , N n ( c 1 ( k ) ) , , N n ( c p ( k ) ) ) Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) , as n , and
( k , N n ( k ) , N n ( 𝚤 1 ( k ) ) , , N n ( 𝚤 u ( k ) ) , f ) ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) , as n .
From Lebesgue’s dominated convergence theorem, we have
Λ 2 N n Λ 2 y ϝ 2 = sup J { E k i k £ 1 Θ £ k £ £ B u ( k , N n ) B u ( k , N ) d k + k i k £ 1 Θ £ k £ £ 0 k ( V ( τ , N n ( τ ) , N n ( 𝚥 1 ( τ ) ) , , N n ( 𝚥 k ( τ ) ) ) V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) ) d ω ( τ ) d k + k i k £ 1 Θ £ k £ £ ( Ω ( k , N n ( k ) , N n ( c 1 ( k ) ) , , N n ( c p ( k ) ) ) Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) ) d B H ( k )
+ k i k £ 1 Θ £ k £ £ F ( ( k , N n ( k ) , N n ( 𝚤 1 ( k ) ) , , N n ( 𝚤 u ( k ) ) , f ) ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) ) W ( d k , d f ) 2 } 0 ,
as n , which is continuous.
Next, we show that { Λ 2 y : N B ε } is an equicontinuous family of functions. Assume ϵ > 0 , small, k i < α < β i + 1 , then
E ( Λ 2 N ) ( β ) ( Λ 2 N ) ( α ) 2 E k i α ϵ k £ 1 Θ β £ k £ £ Θ α £ k £ £ B u ( k ) d k 2 + E α ϵ α k £ 1 Θ β £ k £ £ Θ α £ k £ £ B u ( k ) d k 2 + E α β k £ 1 Θ β £ k £ £ B u ( k ) d k 2 + E k i α ϵ k £ 1 Θ β £ k £ £ Θ α £ k £ £ × 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k 2 + E α ϵ α k £ 1 Θ β £ k £ £ Θ α £ k £ £ × 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k 2 + E α β k £ 1 Θ β £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k 2 + E k i α ϵ k £ 1 Θ β £ k £ £ Θ α £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) ) d B H ( k ) 2 + E α ϵ α k £ 1 Θ β £ k £ £ Θ α £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) ) d B H ( k ) 2 + E α β k £ 1 Θ β £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) ) d B H ( k ) 2 + E k i α ϵ k £ 1 Θ β £ k £ £ Θ α £ k £ £ × F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 + E α ϵ α k £ 1 Θ β £ k £ £ Θ α £ k £ £ × F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 + E α β k £ 1 Θ β £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 .
As β α , we see that E ( Λ 2 N ) ( β ) ( Λ 2 N ) ( α ) 2 0 independently of N B ε , with ϵ sufficiently small, because the compactness of Θ ( ) for > 0 tends to the continuity in the uniform operator topology. Furthermore, we can show that Λ 2 N , N B ε are equicontinuous at = 0 . Then, Λ 2 maps B ε into a family of equicontinuous functions. Next, we show that T ( ) = { ( Λ 2 N ) ( ) : N B ε } is relatively compact in B ε . Clearly, T ( 0 ) is relatively compact in B ε .
Assume k i < i + 1 to be fixed; k i < ϵ < for N B ε , we define
( Λ 2 ϵ N ) ( ) = k i ϵ k £ 1 Θ £ k £ £ B u ( k ) d k + k i ϵ k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) d ω ( τ ) d k + k i ϵ k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + k i ϵ k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) = Θ ϵ £ £ k i ϵ k £ 1 Θ £ k £ ϵ £ £ B u ( k ) d k + Θ ϵ £ £ k i ϵ k £ 1 Θ £ k £ ϵ £ £ 0 k ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) d ω ( τ ) d k + Θ ϵ £ £ k i ϵ k £ 1 Θ £ k £ ϵ £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) + Θ ϵ £ £ k i ϵ k £ 1 Θ £ k £ ϵ £ £ × F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) .
Since Θ ϵ £ £ , ϵ £ £ > 0 is a compact operator, hence T ϵ ( ) = { ( Λ 2 ϵ N ) ( ) : N B ε } is relatively compact in for every ϵ , k i < ϵ < .
Moreover, N B ε , we have
Λ 2 y Λ 2 ϵ y ϝ 2 16 sup J { E ϵ k £ 1 Θ £ k £ £ B u ( k ) d k 2 + E ϵ k £ 1 Θ £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) d ω ( τ ) d k 2 + E ϵ k £ 1 Θ £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) 2 + E ϵ k £ 1 Θ £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) 2 } 16 ϱ 2 { ( b 2 £ 1 ( b ϵ ) 2 £ 1 ) ϱ B 2 2 £ 1 b ϵ b E u ( k ) 2 d k + T r ( Z ) ( b 2 £ 1 ( b ϵ ) 2 £ 1 ) 2 £ 1 b ϵ b 0 k E V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) A 2 d τ d k + 2 H ϵ 2 H 1 ( b 2 £ 1 ( b ϵ ) 2 £ 1 ) 2 £ 1 b ϵ b E Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) L 2 0 2 d k + ( b 2 £ 1 ( b ϵ ) 2 £ 1 ) 2 £ 1 b ϵ b F E ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) 2 λ d f d k } .
We see that, for each N B ε , Λ 2 y Λ 2 ϵ ϝ 2 0 as ϵ 0 + . Therefore, there are relative compact sets arbitrarily close to T ( ) = { ( Λ 2 N ) ( ) : N B ε } ; hence, T ( ) is also relatively compact in B ε .
Thus, by the Arzela–Ascoli theorem Λ 2 is a compact operator. Hence, Λ = Λ 1 + Λ 2 is a condensing map on B ε , and by the fixed-point theorem of Sadovskii, there exists a fixed point N ( · ) for Λ on B ε . Thus, the stochastic system ( 1 ) has a mild solution on Υ .
Theorem 3.
Suppose that Assumptions ( A 1 ) ( A 6 ) are satisfied. Moreover, if M , V , and Ω are uniformly bounded, then ( 1 ) be approximately controllable on Υ.
Proof. 
Assume N is a fixed point of Λ . By the stochastic Fubini theorem, we obtain
N ( b ) = N ¯ b x ( x I + Ξ 0 b ) 1 { E N ¯ b + 0 T ψ ¯ ( s ) d ω ( s ) + 0 T φ ¯ ( s ) d B H ( s ) x k m b ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) d k x k m b ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) d ω ( τ ) d k x k m b ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) W ( d k , d f ) x k m b ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) d B H ( k ) } .
From the condition on M , V , and Ω , there exists D > 0 such that
M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) 2 D , V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) Z 2 D ,
( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) 2 D ,
Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) L 2 0 2 D ,
Consequently, the sequences
{ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) } , { ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) } ,
{ V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) } , { Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) } are weakly compact in
L 2 ( J , ) , L 2 ( L Z ( G , ) ) and L 2 ( L 2 0 ( Q , ) ) ,
so there are subsequences
{ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) } , { ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) } ,
{ V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) } , { Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) } that weakly converge to { M ( k ) } , { ( k , f ) } , { V ( k ) } , { Ω ( k ) } in L 2 ( Υ , ) , L 2 ( L Z ( G , ) ) , and L 2 ( L 2 0 ( Q , ) ) .
From the above, we have
E N ( b ) N ¯ b 2 36 E x ( x I + Ξ 0 b ) 1 E N ¯ b 2 + 36 E 0 b x ( x I + Ξ 0 b ) 1 ψ ¯ ( k ) d ω ( k ) 2 + 36 E 0 b x ( x I + Ξ 0 b ) 1 φ ¯ ( k ) d B H ( k ) 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ M ( k , N ( k ) , N ( 1 ( k ) ) , , N ( m ( k ) ) ) M ( k ) d k 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ M ( k ) d k 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ × 0 k V ( τ , N ( τ ) , N ( 𝚥 1 ( τ ) ) , , N ( 𝚥 k ( τ ) ) ) V ( τ ) d ω ( τ ) d k 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ 0 k V ( τ ) d ω ( τ ) d k 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ × F ( k , N ( k ) , N ( 𝚤 1 ( k ) ) , , N ( 𝚤 u ( k ) ) , f ) ( k ) W ( d k , d f ) 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ F ( k ) W ( d k , d f ) 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ Ω ( k , N ( k ) , N ( c 1 ( k ) ) , , N ( c p ( k ) ) ) Ω ( k ) d B H ( k ) 2 + 36 E k m b x ( x I + Ξ 0 b ) 1 k £ 1 Θ b £ k £ £ Ω ( k ) d B H ( k ) 2 .
By Lemma 2, x ( x I + Ξ 0 b ) 1 0 strongly as x 0 + for all k m < k b , and furthermore, x ( x I + Ξ 0 b ) 1 1 . Thus, E N ( b ) N ¯ b 2 0 as x 0 + by the Lebesgue-dominated convergence theorem and the compactness of Θ ( k ) . Hence, the system (1) is approximate controllable.

4. Example

Consider the CF noninstantaneous impulsive stochastic partial differential equation with fBm and Poisson jump of the form:
D 0 + 0.6 N ( , z ) + 2 z 2 N ( , z ) = cos 1 + cos N ( , z ) + w ( , z ) + 0 3 k N ( k , z ) d ω ( k ) + e 1 + e N ( , z ) d B H ( ) d + F h ( , N ( , z ) , f ) W ( d , d f ) , ( 0 , 2 3 ] ( 5 4 , 3 ] , 0 z π , N ( , 0 ) = N ( , π ) = 0 , ( 0 , 3 ] , N ( , z ) = 2 7 e ( 2 3 ) | N ( , z ) | 1 + | N ( , z ) | , ( 2 3 , 5 4 ] , 0 z π , ( N ( 0 , z ) ) = N 0 ( z ) , 0 z π ,
where D 0.6 is the CFD of order £ = 0.6 , ω is a Wiener process, and B H is an fBm with H ( 1 2 , 1 ) . Assume = Q = G = U = L 2 ( [ 0 , π ] ) and Δ , where Δ y = ( 2 z 2 ) N with domain D ( Δ ) = { N : N , d N d z are absolutely continuous and ( d 2 d z 2 ) N , N ( 0 ) = N ( π ) = 0 } .
Then, Δ generates a strongly continuous semigroup Θ ( · ) , which is compact, analytic, and self-adjoint. Moreover, Δ has a discrete spectrum with eigenvalues n 2 , n N and the corresponding normalized eigenfunctions given by
x n = 2 π sin n N , n = 1 , 2 , . . .
In addition, ( x n ) n N is a complete orthonormal basis in . Then,
Δ N = n = 1 n 2 N , x n x n , N D ( Δ ) .
Moreover, Δ generates an analytic semigroup of the bounded linear operator, { Θ ( ) } 0 on , and is defined by
Θ ( ) N = n = 1 x n 2 N , x n x n , N , 0 .
with Θ ( ) x 1 . We define B : U by B u ( ) ( z ) = w ( , z ) , 0 z π , u U . Furthermore, M : Υ × , V : Υ × L ( G , ) , Ω : Υ × L 2 0 ( Q , ) , : J × × F , and i : ( i , k i ] × are defined by M ( , N ) ( z ) = cos 1 + cos N ( , z ) , V ( k , N ) ( z ) = 3 k N ( k , z ) , Ω ( , N ) ( z ) = e 1 + e N ( , z ) , ( , N ) ( z ) = h ¯ ( , N ( , z ) , f ) , and 1 ( , N ( ) ) = 2 7 e ( 2 3 ) | N ( , · ) | 1 + | N ( , · ) | , respectively. Then M , V , Ω , , and 1 verify ( A 1 ) ( A 6 ) .
Let B = B * = I . Therefore, all conditions of Theorems 2 and 3 are verified and
36 ϱ 2 1 + ϱ 2 ϱ B * 2 ϱ B 2 b 2 £ ( 2 £ 1 ) x 2 ϱ 3 + b 2 £ 1 2 £ 1 χ 1 + T r ( Z ) b 2 £ 1 2 £ 1 χ 2 + 2 H b 2 ( H + £ 1 ) 2 £ 1 χ 3 + b 2 £ 1 2 £ 1 χ 4 + ϱ 3 < 1 ,
and γ 1 = 8 ϱ 2 b 2 £ 2 £ 1 + ϱ 4 + 4 ϱ 2 ϱ 4 < 1 .
Thus, (16) is approximately controllable on Υ .

5. Conclusions

By using fractional calculus, a compact semigroup, Sadovskii’s fixed-point theorem, and stochastic analysis, we investigated the approximate controllability of the given system (1). The obtained theoretical conclusions were illustrated in the later portion with an example. The results can be extended to a fractional stochastic inclusion system.

Author Contributions

Conceptualization, Y.A. and H.M.A.; formal analysis, Y.A. and H.M.A.; investigation, Y.A.; resources, H.M.A.; writing—original draft preparation, Y.A.; writing—review and editing, H.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

The APC was funded by the Deanship of Scientific Research, Qassim University.

Data Availability Statement

Not applicable.

Acknowledgments

The researchers would like to thank the Deanship of Scientific Research, Qassim University, for funding the publication of this project.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
  2. Wang, K.L.; Wang, K.J.; He, C.H. Physical insight of local fractional calculus and its application to fractional Kdv–Burgers–Kuramoto equation. Fractals 2019, 27, 1950122. [Google Scholar] [CrossRef]
  3. Rudolf, R. Mathematical and physical interpretations of fractional derivatives and integrals. In Handbook of Fractional Calculus and Applications; Walter de Gruyter GmbH: Berlin, Germany, 2019. [Google Scholar]
  4. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and numerical methods, Series on Complexity, Nonlinearity and Chaos. World Sci. 2012, 3. [Google Scholar]
  5. Matlob, M.A.; Jamali, Y. The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems, A primer. Crit. Rev. Biomed. Eng. 2019, 47, 249–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Saqib, M.; Khan, I.; Shafie, S. Application of fractional differentialequations to heat transfer in hybrid nanofluid:modeling and solution via integral transforms. Adfances Differ. Equat. 2019, 2019, 52. [Google Scholar] [CrossRef] [Green Version]
  7. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  8. Yang, L.; Zhang, D.; Karniadakis, G.E. Physics-informed generative adversarial networks for stochastic differential equations. Siam Sci. Comput. 2020, 42, A292–A317. [Google Scholar] [CrossRef] [Green Version]
  9. Zhu, Q. Stability analysis of stochastic delay differential equations with Lévy noise. Syst. Control. Lett. 2018, 118, 62–68. [Google Scholar] [CrossRef]
  10. Huang, X.; Ren, P.; Wang, F.Y. Distribution dependent stochastic differential equations. Front. Math. China 2021, 16, 257–301. [Google Scholar] [CrossRef]
  11. Omar, O.A.; Elbarkouky, R.A.; Ahmed, H.M. Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study. Alex. Eng. J. 2022, 61, 8595–8609. [Google Scholar] [CrossRef]
  12. Deng, S.; Shu, X.B.; Mao, J. Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Monch fixed point. J. Math. Anal. Appl. 2018, 467, 398–420. [Google Scholar] [CrossRef]
  13. Xu, L.; Ge, S.S.; Hu, H. Boundedness and stability analysis for impulsive stochastic differential equations driven by G-Brownian motion. Int. J. Control 2019, 92, 642–652. [Google Scholar] [CrossRef]
  14. Zhu, Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans. Autom. Control 2018, 64, 3764–3771. [Google Scholar] [CrossRef]
  15. Hu, W.; Zhu, Q.; Karimi, H.R. Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems. IEEE Trans. Autom. Control 2019, 64, 5207–5213. [Google Scholar] [CrossRef]
  16. Hu, W.; Zhu, Q. Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent impulsive effects. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2027–2032. [Google Scholar] [CrossRef]
  17. Rao, R.; Lin, Z.; Ai, X.; Wu, J. Synchronization of epidemic systems with Neumann boundary value under delayed impulse. Mathematics 2022, 10, 2064. [Google Scholar] [CrossRef]
  18. Liu, J.; Xu, W.; Guo, Q. Global attractiveness and exponential stability for impulsive fractional neutral stochastic evolution equations driven by fBm. Adv. Differ. Equat. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
  19. Abouagwa, M.; Cheng, F.; Li, J. Impulsive stochastic fractional differential equations driven by fractional Brownian motion. Adv. Differ. Equat. 2020, 2020, 57. [Google Scholar] [CrossRef]
  20. Lakhel, E.-H.; Tlidi, A. Existence, uniqueness and stability of impulsive stochastic neutral functional differential equations driven by Rosenblatt process with varying-time delays. Random Oper. Stoch. Equ. 2019, 27, 213–223. [Google Scholar] [CrossRef]
  21. Ahmed, H.M.; El-Borai, M.M.; Ramadan, M.E. Noninstantaneous impulsive and nonlocal Hilfer fractional stochastic integrodifferential equations with fractional Brownian motion and Poisson jumps. Int. J. Nonlinear Sci. Numer. Simul. 2020, 22, 927–942. [Google Scholar] [CrossRef]
  22. Dhayal, R.; Malik, M.; Abbas, S. Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. Aims Math. 2019, 4, 663. [Google Scholar] [CrossRef]
  23. Saravanakumar, S.; Balasubramaniam, P. Approximate controllability of nonlinear Hilfer fractional stochastic differential system with Rosenblatt process and Poisson jumps. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 727–737. [Google Scholar] [CrossRef]
  24. Liang, Y. Existence and Approximate Controllability of Mild Solutions for Fractional Evolution Systems of Sobolev-Type. Fractal Fract. 2022, 6, 56. [Google Scholar] [CrossRef]
  25. Ahmed, H.M.; El-Borai, M.M.; El Bab, A.S.; Ramadan, M.E. Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion. Bound. Value Probl. 2020, 2020, 1–25. [Google Scholar] [CrossRef]
  26. Ahmed, H.M.; Wang, J. Exact Null Controllability of Sobolev-Type Hilfer Fractional Stochastic Differential Equations with Fractional Brownian Motion and Poisson Jumps. Bull. Iran. Math. Soc. 2018, 44, 673–690. [Google Scholar] [CrossRef]
  27. Ahmed, H.M.; El-Borai, M.M.; El-Owaidy, H.M.; Ghanem, A.S. Existence solution and controllability of Sobolev type delay nonlinear fractional integro-differential system. Mathematics 2019, 7, 79. [Google Scholar] [CrossRef] [Green Version]
  28. Ge, Z. Controllability of Semilinear Stochastic Generalized Systems in Hilbert Spaces by GE-Evolution Operator Method. Mathematics 2023, 11, 743. [Google Scholar] [CrossRef]
  29. Mahmudov, N.I. Mean Square Finite-Approximate Controllability of Semilinear Stochastic Differential Equations with Non-Lipschitz Coefficients. Mathematics 2023, 11, 639. [Google Scholar] [CrossRef]
  30. Shen, G.J.; Ren, Y. Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space. J. Korean Stat. Soc. 2015, 44, 123–133. [Google Scholar] [CrossRef]
  31. Jost, J. Postmodern Analysis; Springer Science & Business Media: Cham, Switzerland, 2005. [Google Scholar]
  32. Hannabou, M.; Hilal, K.; Kajouni, A. Existence and uniqueness of mild solutions to impulsive nonlocal Cauchy problems. J. Math. 2020, 2020, 5729128. [Google Scholar] [CrossRef]
  33. Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alhojilan, Y.; Ahmed, H.M. New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps. Mathematics 2023, 11, 1093. https://doi.org/10.3390/math11051093

AMA Style

Alhojilan Y, Ahmed HM. New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps. Mathematics. 2023; 11(5):1093. https://doi.org/10.3390/math11051093

Chicago/Turabian Style

Alhojilan, Yazid, and Hamdy M. Ahmed. 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps" Mathematics 11, no. 5: 1093. https://doi.org/10.3390/math11051093

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop