Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Empirical Findings
3.2. Robustness Checks
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Factor | Description |
---|---|---|
MKTF | Market risk factor | MKTF is the excess return on the market, i.e., the value-weighted return of all the bond indices in the sample at the end of month t minus the risk-free rate, i.e., the one-month T-Bill return. |
DURF | Duration factor | The factor is represented by a long–short zero-investment portfolio that buys (sells) the value-weighted portfolio comprising 30% of bond indices with the highest (lowest) adjusted duration. |
CREDF | Credit risk factor | The factor is represented by a long–short zero-investment portfolio that buys (sells) the value-weighted portfolio comprising 30% of bond indices with the highest (lowest) adjusted credit risk score. The credit risk score for each market is calculated as the average numerical rating from three major rating agencies: Moody’s, S&P, and Fitch. To obtain the numerical ratings, we convert all the ratings linearly so that the top rating (AAA/Aaa) is associated with 1 and the bottom rating (C) is associated with 21. |
SIZEF | Size factor | The factor is represented by a long–short zero-investment portfolio that buys (sells) the value-weighted portfolio comprising 30% of bond indices with the highest (lowest) market value of the relevant bond basket. |
MOMF | Momentum factor | The factor is represented by a long–short zero-investment portfolio that buys (sells) the value-weighted portfolio comprising 30% of bond indices with the lowest (highest) change in yield-to-maturity from t-12 to t-1. This corresponds with going long (short) bonds with the highest (lowest) return induced by the change in YTMs. |
REVF | Reversal factor | The factor is represented by a long–short zero-investment portfolio that buys (sells) the value-weighted portfolio comprising 30% of bond indices with the highest (lowest) change in the yield-to-maturity (YTM) from t-60 to t-13. This corresponds with going long (short) bonds with the lowest (highest) return induced by the change in YTMs. |
CARF | Carry factor | The factor is represented by a long–short zero-investment portfolio that buys (sells) the value-weighted portfolio comprising 30% of bond indices with the highest (lowest) lowest carry. The carry variable is measured as the difference between the yield-to-maturity on 10-year government bonds and the 3-month interbank interest rate. |
Symbol | Variable | Description |
---|---|---|
Panel A: Dependent variables | ||
R1 | Daily absolute residuals from a seven-factor model | R1 represents the residuals from the seven-factor model (1), computed as |ln(1 + R)|. |
R2 | Daily absolute returns in U.S. dollars | R2 represents the daily returns computed as |ln(1 + R)|. |
Panel B: Explanatory variables of interest | ||
gvt | Government Response Index | COVID-19 government policy response index aggregating all types of policies and rescaling them to create a score between 0 and 100 on day t |
cntm | Containment and Health Index | COVID-19 containment and health index aggregating only containment, closure, and health policies and rescaling them rescaled to create a score between 0 and 100 on day t. |
stg | Stringency Index | COVID-19 containment and health index aggregating only containment and closure policies and rescaling them rescaled to create a score between 0 and 100 on day t. |
eco | Economic Support Index | COVID-19 economic support index aggregating only the goverment policy responses targeting and providing economic support and rescaling them to create a score between 0 and 100 on day t. |
inf | New infections | The new cases of infection are computed as ln(1 + ΔINF’), where INF’ is the number of infected cases. |
Panel C: Control variables | ||
dur | Duration | Average adjusted duration of the bond market index on day t-1. |
cred | Quantified credit rating | Numerical sovereign rating of the government bonds in the index on day t-1. The credit risk score for each market is calculated as the average numerical rating from three major rating agencies: Moody’s, S&P, and Fitch. To obtain the numerical ratings, we convert all the ratings linearly, so that the top rating (AAA/Aaa) is associated with 1 and the bottom rating (C) is associated with 21. |
mmr | Money market rate | Three-month interbank rate that is available in a given country at t-1. |
car | Carry | The difference between the yield-to-maturity on 10-year government bonds and the 3-month interbank interest rate. |
cx | Convexity | Average adjusted convexity of the bond market index on day t-1. |
size | Market value | Natural logarithm of the market value of the bond index portfolio expressed in U.S. dollars on day t-1. |
mom | Momentum | Change in the yield-to-maturity level on the government bond index in months t-12 to t-1. |
rev | Reversal | Change in the yield-to-maturity level on the government bond index in months t-60 to t-13. |
dummy | “Monday effect” dummy | The variable takes the value 1 if the day of the week is Monday and 0 otherwise. |
References
- Albulescu, C.T. COVID-19 and the United States financial markets’ volatility. Financ. Res. Lett. 2021, 38, 101699. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, C.; Eleftheriou, K.; Patsoulis, P. COVID-19 containment measures and stock market returns: An international spatial econometrics investigation. J. Behav. Exp. Financ. 2021, 29, 100428. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.S.; Butt, H.A.; Haroon, O.; Rizvi, S.A.R. Deaths, panic, lockdowns and U.S. equity markets: The case of COVID-19 pandemic. Financ. Res. Lett. 2021, 38, 101701. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Liu, L.; Wang, Z. COVID-19 Sentiment and the Chinese Stock Market: Evidence from the Official News Media and Sina Weibo. Res. Int. Bus. Financ. 2021, 58, 101432. [Google Scholar] [CrossRef]
- Gao, X.; Ren, Y.; Umar, M. To what extent does COVID-19 drive stock market volatility? A comparison between the U.S. and China. Econ. Res.-Ekon. Istraživanja 2021, 35, 1686–1706. [Google Scholar] [CrossRef]
- Goodell, J.W.; Huynh, T.L.D. Did Congress trade ahead? Considering the reaction of U.S. industries to COVID-19. Financ. Res. Lett. 2020, 36, 101578. [Google Scholar] [CrossRef]
- James, N.; Menzies, M. Association between COVID-19 cases and international equity indices. Phys. D Nonlinear Phenom. 2021, 417, 132809. [Google Scholar] [CrossRef]
- Ozkan, O. Impact of COVID-19 on stock market efficiency: Evidence from developed countries. Res. Int. Bus. Financ. 2021, 58, 101445. [Google Scholar] [CrossRef]
- Seven, Ü.; Yılmaz, F. World equity markets and COVID-19: Immediate response and recovery prospects. Res. Int. Bus. Financ. 2021, 56, 101349. [Google Scholar] [CrossRef]
- Szczygielski, J.J.; Bwanya, P.R.; Charteris, A.; Brzeszczyński, J. The only certainty is uncertainty: An analysis of the impact of COVID-19 uncertainty on regional stock markets. Financ. Res. Lett. 2021, 43, 101945. [Google Scholar] [CrossRef]
- Zaremba, A.; Kizys, R.; Aharon, D.Y.; Demir, E. Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Financ. Res. Lett. 2020, 35, 101597. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, A.; Aharon, D.Y.; Demir, E.; Kizys, R.; Zawadka, D. COVID-19, government policy responses, and stock market liquidity around the world: A note. Res. Int. Bus. Financ. 2021, 56, 101359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hu, M.; Ji, Q. Financial markets under the global pandemic of COVID-19. Financ. Res. Lett. 2020, 36, 101528. [Google Scholar] [CrossRef]
- Škrinjarić, T. Profiting on the Stock Market in Pandemic Times: Study of COVID-19 Effects on CESEE Stock Markets. Mathematics 2021, 9, 2077. [Google Scholar] [CrossRef]
- Aziz, M.I.A.; Ahmad, N.; Zichu, J.; Nor, S.M. The Impact of COVID-19 on the Connectedness of Stock Index in ASEAN+3 Economies. Mathematics 2022, 10, 1417. [Google Scholar] [CrossRef]
- Bouri, E.; Demirer, R.; Gupta, R.; Nel, J. COVID-19 Pandemic and Investor Herding in International Stock Markets. Risks 2021, 9, 168. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Chan, K.K.K. How does Covid-19 affect global equity markets? Financ. Innov. 2021, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Navratil, R.; Taylor, S.; Vecer, J. On equity market inefficiency during the COVID-19 pandemic. Int. Rev. Financ. Anal. 2021, 77, 101820. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Phan, D.H.B.; Ming, T.C.; Nguyen, V.L. An assessment of how COVID-19 changed the global equity market. Econ. Anal. Policy 2021, 69, 480–491. [Google Scholar] [CrossRef]
- Arellano, C.; Bai, Y.; Mihalache, G.P. Deadly Debt Crises: COVID-19 in Emerging Markets; National Bureau of Economic Research: Cambridge, MA, USA, 2020; No. w27275. [Google Scholar]
- Gubareva, M. The impact of Covid-19 on liquidity of emerging market bonds. Financ. Res. Lett. 2020, 41, 101826. [Google Scholar] [CrossRef]
- He, Z.; Nagel, S.; Song, Z. Treasury Inconvenience Yields during the COVID-19 Crisis; National Bureau of Economic Research: Cambridge, MA, USA, 2020; No. w27416. [Google Scholar]
- O’Hara, M.; Zhou, X.A. Anatomy of a liquidity crisis: Corporate bonds in the COVID-19 crisis. J. Financ. Econ. 2021, 142, 46–68. [Google Scholar] [CrossRef] [PubMed]
- Sène, B.; Mbengue, M.L.; Allaya, M.M. Overshooting of sovereign emerging Eurobond yields in the context of COVID-19. Financ. Res. Lett. 2021, 38, 101746. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, A.; Kizys, R.; Aharon, D.Y. Volatility in international sovereign bond markets: The role of government policy responses to the COVID-19 pandemic. Financ. Res. Lett. 2021, 43, 102011. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, A.; Kizys, R.; Aharon, D.Y.; Umar, Z. Term spreads and the COVID-19 pandemic: Evidence from international sovereign bond markets. Financ. Res. Lett. 2022, 44, 102042. [Google Scholar] [CrossRef] [PubMed]
- Gubareva, M.; Umar, Z.; Sokolov, T.; Vinh Vo, X. Astonishing insights: Emerging market debt spreads throughout the pandemic. Appl. Econ. 2022, 18, 2067–2076. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J.; Kost, K.; Sammon, M.; Viratyosin, T. The unprecedented stock market reaction to COVID-19. Rev. Asset Pricing Stud. 2020, 10, 742–758. [Google Scholar] [CrossRef]
- Belaid, F.; Amar, A.B.; Goutte, S.; Guesmi, K. Emerging and advanced economies markets behaviour during the COVID-19 crisis era. Int. J. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Fakhfekh, M.; Jeribi, A.; Salem, M.B. Volatility dynamics of the Tunisian stock market before and during the COVID-19 outbreak: Evidence from the GARCH family models. Int. J. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Fetzer, T.R.; Witte, M.; Hensel, L.; Jachimowicz, J.; Haushofer, J.; Ivchencko, A.; Caris, S.; Reutskaja, E. Global Behaviors and Perceptions at the Onset of the COVID-19 Pandemic; National Bureau of Economic Research: Cambridge, MA, USA, 2020; WORKING PAPER 27082; Available online: https://www.nber.org/papers/w27082 (accessed on 29 November 2020).
- Lee, C.-C.; Lee, C.-C.; Wu, Y. The impact of COVID-19 pandemic on hospitality stock returns in China. Int. J. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Lyócsa, Š.; Baumöhl, E.; Výrost, T.; Molnár, P. Fear of the coronavirus and the stock markets. Financ. Res. Lett. 2020, 36, 101735. [Google Scholar] [CrossRef]
- Albulescu, C.T.; Mina, M.; Oros, C. Oil-US Stock Market Nexus: Some insights about the New Coronavirus Crisis. Econ. Bull. 2021, 41, 588–593. [Google Scholar] [CrossRef]
- Ftiti, Z.; Ameur, H.B.; Louhichi, W. Does non-fundamental news related to COVID-19 matter for stock returns? Evidence from Shanghai stock market. Econ. Model. 2021, 99, 105484. [Google Scholar] [CrossRef] [PubMed]
- Pastor, L.; Veronesi, P. Uncertainty about government policy and stock prices. J. Financ. 2012, 67, 1219–1264. [Google Scholar] [CrossRef] [Green Version]
- Amengual, D.; Xiu, D. Resolution of policy uncertainty and sudden declines in volatility. J. Econom. 2018, 203, 297–315. [Google Scholar] [CrossRef]
- Kizys, R.; Tzouvanas, P.; Donadelli, M. From COVID-19 herd immunity to investor herding in international stock markets: The role of government and regulatory restrictions. Int. Rev. Financ. Anal. 2020, 74, 101663. [Google Scholar] [CrossRef]
- Albulescu, C.T.; Tiwari, A.K.; Kyophilavong, P. Nonlinearities and Chaos: A New Analysis of CEE Stock Markets. Mathematics 2021, 9, 707. [Google Scholar] [CrossRef]
- Canay, I.A. A simple approach to quantile regression for panel data. Econom. J. 2011, 14, 368–386. [Google Scholar] [CrossRef]
- Wang, P.; Wen, Y.; Xu, Z. Financial development and long-run volatility trends. Rev. Econ. Dyn. 2018, 28, 221–251. [Google Scholar] [CrossRef] [Green Version]
- Rosen, A.M. Set identification via quantile restrictions in short panels. J. Econom. 2012, 166, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Duttilo, P.; Gattone, S.A.; Di Battista, T. Volatility Modeling: An Overview of Equity Markets in the Euro Area during COVID-19 Pandemic. Mathematics 2021, 9, 1212. [Google Scholar] [CrossRef]
- Andrieș, A.M.; Ongena, S.; Sprincean, N. The COVID-19 pandemic and sovereign bond risk. N. Am. J. Econ. Finance 2021, 58, 101527. [Google Scholar] [CrossRef]
- Augustin, P.; Sokolovski, V.; Subrahmanyam, M.G.; Tamio, D. In sickness and in debt: The COVID-19 impact on sovereign credit risk. J. Financ. Econ. 2021, 143, 1251–1274. [Google Scholar] [CrossRef] [PubMed]
- Cevik, S.; Öztürkkal, B. Contagion of fear: Is the impact of COVID-19 on sovereign risk really indiscriminate? Int. Financ. 2021, 24, 134–154. [Google Scholar] [CrossRef]
- Daehler, T.; Aizenman, J.; Jinjarak, Y. Emerging markets sovereign CDS spreads during COVID-19: Economics versus epidemiology news. Econ. Model. 2020, 100, 105504. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.F.; Wang, X.; Wu, G.; Xu, W. The COVID-19 pandemic and sovereign credit risk. China Financ. Rev. Int. 2021, 11, 287–301. [Google Scholar] [CrossRef]
- Andres, C.; Betzer, A.; Doumet, M. Measuring Abnormal Credit Default Swap Spreads. 2016. Available online: https://ssrn.com/abstract=2194320 (accessed on 8 May 2021).
- Baltussen, G.; Swinkels, L.; van Vliet, P. Global factor premiums. Journal of Financial Economics (JFE), Forthcoming. 2020. Available online: https://ssrn.com/abstract=3325720 (accessed on 8 May 2021).
- Asness, C.S.; Moskowitz, T.J.; Pedersen, L.H. Value and momentum everywhere. J. Financ. 2013, 68, 929–985. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (accessed on 3 November 2020).
- Antonakakis, N.; Kizys, R. Dynamic spillovers between commodity and currency markets. Int. Rev. Financ. Anal. 2015, 41, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, A.A.A.; Miao, H.; Ramchander, S. Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper. J. Futur. Mark. 2011, 31, 55–80. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Carhart, M.M. On Persistence in Mutual Fund Performance. J. Financ. 1997, 52, 57–82. [Google Scholar] [CrossRef]
- Available online: https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker (accessed on 3 November 2020).
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61 (Suppl. 1), 631–652. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R. Quantile regression for longitudinal data. J. Multivar. Anal. 2004, 91, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Lamarche, C. Robust penalized quantile regression estimation for panel data. J. Econom. 2010, 157, 396–408. [Google Scholar] [CrossRef]
- Galvao, A.F., Jr. Quantile regression for dynamic panel data with fixed effects. J. Econom. 2011, 164, 142–157. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Hu, Y.; Wan, G. Dealing with dynamic endogeneity in international business research. J. Int. Bus. Stud. 2021, 52, 339–362. [Google Scholar] [CrossRef]
Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|
R1 | 3.392 | 4.283 | 0.001 | 104.7 |
R2 | 5.607 | 6.966 | 0.000 | 125.0 |
gvt | 49.32 | 24.61 | 0.000 | 95.54 |
cntm | 49.28 | 24.70 | 0.000 | 98.96 |
stg | 47.99 | 26.62 | 0.000 | 100.0 |
eco | 49.57 | 35.21 | 0.000 | 100.0 |
inf | 4.578 | 3.097 | 0.000 | 11.49 |
dur | 8.559 | 1.124 | 5.390 | 10.45 |
cred | 4.623 | 3.663 | 1.000 | 13.00 |
mmr | 0.788 | 1.805 | −1.957 | 7.300 |
car | 0.693 | 1.107 | −1.269 | 7.623 |
cx | 81.47 | 20.98 | 34.86 | 119.9 |
size | 16.09 | 0.902 | 14.13 | 18.38 |
mom | −0.496 | 0.589 | −3.138 | 3.220 |
rev | −0.656 | 1.547 | −16.54 | 3.680 |
Lower Quantiles | Middle Quantiles | Upper Quantiles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.85 | 0.95 | |
gvt | 0.007 *** | 0.006 *** | 0.005 *** | 0.007 *** | 0.010 *** | 0.012 *** | 0.014 *** | 0.013 *** | 0.011 ** | −0.007 |
(0.002) | (0.002) | (0.002) | (0.001) | (0.002) | (0.002) | (0.002) | (0.003) | (0.005) | (0.012) | |
inf | 0.201 *** | 0.188 *** | 0.192 *** | 0.181 *** | 0.163 *** | 0.159 *** | 0.136 *** | 0.135 *** | 0.117 *** | 0.097 |
(0.021) | (0.017) | (0.016) | (0.014) | (0.016) | (0.018) | (0.022) | (0.025) | (0.041) | (0.100) | |
dur | −2.444 *** | −2.857 *** | −2.373 *** | −2.218 *** | −2.088 *** | −2.034 *** | −1.890 *** | −1.529 *** | −1.482 * | −3.128 |
(0.475) | (0.374) | (0.357) | (0.318) | (0.361) | (0.394) | (0.495) | (0.559) | (0.899) | (2.190) | |
cred | −0.379 *** | −0.382 *** | −0.329 *** | −0.327 *** | −0.326 *** | −0.326 *** | −0.321 *** | −0.328 *** | −0.343 *** | −0.443 *** |
(0.020) | (0.015) | (0.015) | (0.013) | (0.015) | (0.016) | (0.020) | (0.023) | (0.038) | (0.092) | |
mmr | 2.361 *** | 2.518 *** | 2.535 *** | 2.558 *** | 2.617 *** | 2.689 *** | 2.753 *** | 2.869 *** | 2.946 *** | 3.495 *** |
(0.045) | (0.036) | (0.034) | (0.030) | (0.034) | (0.038) | (0.047) | (0.053) | (0.086) | (0.211) | |
car | 2.250 *** | 2.422 *** | 2.338 *** | 2.435 *** | 2.484 *** | 2.598 *** | 2.696 *** | 2.879 *** | 3.220 *** | 4.721 *** |
(0.071) | (0.056) | (0.053) | (0.048) | (0.054) | (0.059) | (0.074) | (0.084) | (0.135) | (0.329) | |
cx | 0.121 *** | 0.151 *** | 0.127 *** | 0.120 *** | 0.114 *** | 0.114 *** | 0.105 *** | 0.085 *** | 0.083 | 0.192 |
(0.027) | (0.021) | (0.020) | (0.018) | (0.021) | (0.023) | (0.028) | (0.032) | (0.052) | (0.127) | |
size | −0.445 *** | −0.506 *** | −0.540 *** | −0.621 *** | −0.717 *** | −0.844 *** | −0.936 *** | −1.073 *** | −1.274 *** | −1.568 *** |
(0.054) | (0.042) | (0.040) | (0.036) | (0.041) | (0.044) | (0.056) | (0.063) | (0.102) | (0.248) | |
mom | −0.534 *** | −0.689 *** | −0.616 *** | −0.673 *** | −0.773 *** | −0.859 *** | −0.930 *** | −1.102 *** | −1.562 *** | −2.664 *** |
(0.082) | (0.065) | (0.062) | (0.055) | (0.062) | (0.068) | (0.086) | (0.097) | (0.156) | (0.381) | |
rev | 0.565 *** | 0.482 *** | 0.470 *** | 0.491 *** | 0.494 *** | 0.528 *** | 0.543 *** | 0.519 *** | 0.591 *** | 0.658 *** |
(0.036) | (0.029) | (0.027) | (0.024) | (0.028) | (0.030) | (0.038) | (0.043) | (0.069) | (0.169) | |
dummy | 0.004 | −0.062 | −0.087 | −0.118 | −0.1537 | −0.148 * | −0.156 | −0.062 | 0.0663 | −0.110 |
(0.108) | (0.085) | (0.081) | (0.072) | (0.082) | (0.089) | (0.112) | (0.127) | (0.205) | (0.498) |
Lower Quantiles | Middle Quantiles | Upper Quantiles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.85 | 0.95 | |
cntm | 0.010 *** | 0.009 *** | 0.007 *** | 0.009 *** | 0.013 *** | 0.015 *** | 0.017 *** | 0.019 *** | 0.019 *** | 0.007 |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.003) | (0.005) | (0.012) | |
inf | 0.182 *** | 0.170 *** | 0.174 *** | 0.166 *** | 0.143 *** | 0.135 *** | 0.116 *** | 0.101 *** | 0.075 * | 0.001 |
(0.021) | (0.017) | (0.016) | (0.014) | (0.016) | (0.017) | (0.022) | (0.025) | (0.041) | (0.101) | |
dur | −2.209 *** | −2.498 *** | −2.067 *** | −1.858 *** | −1.744 *** | −1.697 *** | −1.596 *** | −1.243 ** | −1.115 | −2.561 |
(0.466) | (0.375) | (0.364) | (0.325) | (0.364) | (0.386) | (0.480) | (0.562) | (0.910) | (2.221) | |
cred | −0.374 *** | −0.374 *** | −0.317 *** | −0.324 *** | −0.314 *** | −0.322 *** | −0.315 *** | −0.315 *** | −0.329 *** | −0.424 *** |
(0.019) | (0.015) | (0.015) | (0.013) | (0.015) | (0.016) | (0.020) | (0.023) | (0.038) | (0.093) | |
mmr | 2.293 *** | 2.470 *** | 2.475 *** | 2.492 *** | 2.538 *** | 2.611 *** | 2.676 *** | 2.791 *** | 2.886 *** | 3.419 *** |
(0.044) | (0.036) | (0.035) | (0.031) | (0.035) | (0.037) | (0.046) | (0.054) | (0.087) | (0.213) | |
car | 2.170 *** | 2.314 *** | 2.249 *** | 2.345 *** | 2.389 *** | 2.535 *** | 2.608 *** | 2.782 *** | 3.070 *** | 4.610 *** |
(0.070) | (0.056) | (0.054) | (0.049) | (0.054) | (0.058) | (0.072) | (0.084) | (0.137) | (0.334) | |
cx | 0.110 *** | 0.131 *** | 0.111 *** | 0.099 *** | 0.095 *** | 0.095 *** | 0.089 *** | 0.070 ** | 0.062 | 0.164 |
(0.027) | (0.021) | (0.021) | (0.019) | (0.021) | (0.022) | (0.028) | (0.032) | (0.053) | (0.129) | |
size | −0.453 *** | −0.516 *** | −0.553 *** | −0.625 *** | −0.716 *** | −0.836 *** | −0.936 *** | −1.084 *** | −1.302 *** | −1.535 *** |
(0.052) | (0.042) | (0.041) | (0.036) | (0.041) | (0.043) | (0.054) | (0.063) | (0.103) | (0.251) | |
mom | −0.521 *** | −0.668 *** | −0.583 *** | −0.642 *** | −0.748 *** | −0.821 *** | −0.878 *** | −1.082 *** | −1.518 *** | −2.690 *** |
(0.080) | (0.065) | (0.063) | (0.056) | (0.063) | (0.067) | (0.083) | (0.097) | (0.158) | (0.385) | |
rev | 0.588 *** | 0.493 *** | 0.481 *** | 0.496 *** | 0.508 *** | 0.539 *** | 0.554 *** | 0.531 *** | 0.607 *** | 0.698 *** |
(0.035) | (0.028) | (0.028) | (0.025) | (0.028) | (0.029) | (0.036) | (0.043) | (0.070) | (0.170) | |
dummy | −0.012 | −0.051 | −0.080 | −0.131 * | −0.148 * | −0.162 * | −0.161 | −0.057 | 0.044 | 0.004 |
(0.106) | (0.085) | (0.082) | (0.074) | (0.082) | (0.087) | (0.109) | (0.128) | (0.207) | (0.505) |
Lower Quantiles | Middle Quantiles | Upper Quantiles | ||||||||
0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.85 | 0.95 | |
eco | −0.002 | −0.004 *** | −0.002 * | −0.001 | −0.001 | −0.001 | −0.001 | −0.004 ** | −0.010 *** | −0.025 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | (0.003) | (0.007) | |
inf | 0.273 *** | 0.255 *** | 0.240 *** | 0.236 *** | 0.239 *** | 0.238 *** | 0.224 *** | 0.243 *** | 0.209 *** | 0.170 ** |
(0.016) | (0.014) | (0.012) | (0.011) | (0.013) | (0.014) | (0.019) | (0.023) | (0.033) | (0.085) | |
dur | −3.718 *** | −4.251 *** | −3.546 *** | −3.272 *** | −3.264 *** | −3.125 *** | −3.131 *** | −2.733 *** | −2.920 *** | −3.751 |
(0.444) | (0.378) | (0.337) | (0.316) | (0.362) | (0.391) | (0.507) | (0.614) | (0.884) | (2.282) | |
cred | −0.366 *** | −0.370 *** | −0.314 *** | −0.314 *** | −0.325 *** | −0.331 *** | −0.332 *** | −0.348 *** | −0.345 *** | −0.424 *** |
(0.018) | (0.015) | (0.014) | (0.013) | (0.015) | (0.016) | (0.021) | (0.025) | (0.037) | (0.095) | |
mmr | 2.343 *** | 2.546 *** | 2.572 *** | 2.594 *** | 2.664 *** | 2.721 *** | 2.814 *** | 2.902 *** | 3.006 *** | 3.394 *** |
(0.043) | (0.036) | (0.032) | (0.030) | (0.035) | (0.038) | (0.049) | (0.059) | (0.086) | (0.221) | |
car | 2.348 *** | 2.463 *** | 2.351 *** | 2.437 *** | 2.555 *** | 2.654 *** | 2.777 *** | 3.006 *** | 3.217 *** | 4.479 *** |
(0.066) | (0.056) | (0.050) | (0.047) | (0.054) | (0.058) | (0.075) | (0.091) | (0.132) | (0.340) | |
cx | 0.187 *** | 0.226 *** | 0.191 *** | 0.176 *** | 0.178 *** | 0.172 *** | 0.172 *** | 0.148 *** | 0.161 *** | 0.215 |
(0.025) | (0.022) | (0.019) | (0.018) | (0.021) | (0.022) | (0.029) | (0.035) | (0.051) | (0.132) | |
size | −0.331 *** | −0.419 *** | −0.468 *** | −0.544 *** | −0.640 *** | −0.757 *** | −0.840 *** | −0.982 *** | −1.175 *** | −1.347 *** |
(0.050) | (0.042) | (0.038) | (0.035) | (0.041) | (0.044) | (0.057) | (0.069) | (0.100) | (0.258) | |
mom | −0.542 *** | −0.697 *** | −0.630 *** | −0.660 *** | −0.770 *** | −0.850 *** | −0.928 *** | −1.016 *** | −1.392 *** | −2.258 *** |
(0.077) | (0.066) | (0.059) | (0.055) | (0.063) | (0.068) | (0.089) | (0.107) | (0.155) | (0.399) | |
rev | 0.475 *** | 0.388 *** | 0.383 *** | 0.413 *** | 0.416 *** | 0.430 *** | 0.416 *** | 0.377 *** | 0.427 *** | 0.442 ** |
(0.034) | (0.029) | (0.026) | (0.024) | (0.028) | (0.030) | (0.039) | (0.047) | (0.069) | (0.177) | |
dummy | 0.001 | −0.068 | −0.085 | −0.107 | −0.196 ** | −0.175 ** | −0.185 | −0.019 | −0.012 | −0.100 |
(0.101) | (0.086) | (0.076) | (0.072) | (0.082) | (0.089) | (0.115) | (0.139) | (0.201) | (0.519) |
Lower Quantiles | Middle Quantiles | Upper Quantiles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.85 | 0.95 | |
gvt | 0.002 | 0.019 *** | 0.020 *** | 0.023 *** | 0.030 *** | 0.033 *** | 0.032 *** | 0.034 *** | 0.029 *** | −0.036 * |
(0.004) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.004) | (0.006) | (0.009) | (0.020) | |
inf | 0.310 *** | 0.264 *** | 0.246 *** | 0.238 *** | 0.203 *** | 0.195 *** | 0.217 *** | 0.217 *** | 0.249 *** | 0.349 ** |
(0.033) | (0.026) | (0.025) | (0.024) | (0.027) | (0.031) | (0.037) | (0.049) | (0.076) | (0.165) | |
dur | −5.950 *** | −4.269 *** | −4.197 *** | −4.576 *** | −5.363 *** | −6.754 *** | −8.351 *** | −9.593 *** | −12.41 *** | −16.18 *** |
(0.734) | (0.576) | (0.545) | (0.529) | (0.589) | (0.674) | (0.805) | (1.066) | (1.655) | (3.604) | |
cred | −0.330 *** | −0.340 *** | −0.363 *** | −0.360 *** | −0.357 *** | −0.342 *** | −0.320 *** | −0.313 *** | −0.235 *** | −0.257 * |
(0.031) | (0.024) | (0.023) | (0.022) | (0.024) | (0.028) | (0.034) | (0.045) | (0.069) | (0.152) | |
mmr | 3.716 *** | 3.965 *** | 4.187 *** | 4.258 *** | 4.309 *** | 4.432 *** | 4.540 *** | 4.782 *** | 5.056 *** | 6.006 *** |
(0.070) | (0.055) | (0.052) | (0.051) | (0.056) | (0.065) | (0.077) | (0.102) | (0.159) | (0.347) | |
car | 3.341 *** | 3.305 *** | 3.543 *** | 3.693 *** | 3.887 *** | 4.119 *** | 4.290 *** | 4.455 *** | 4.791 *** | 6.643 *** |
(0.110) | (0.086) | (0.082) | (0.079) | (0.088) | (0.101) | (0.121) | (0.160) | (0.249) | (0.542) | |
cx | 0.323 *** | 0.233 *** | 0.231 *** | 0.254 *** | 0.300 *** | 0.388 *** | 0.479 *** | 0.556 *** | 0.726 *** | 0.972 *** |
(0.042) | (0.033) | (0.031) | (0.030) | (0.034) | (0.039) | (0.046) | (0.062) | (0.096) | (0.210) | |
size | −0.560 *** | −0.689 *** | −0.734 *** | −0.867 *** | −0.946 *** | −1.107 *** | −1.278 *** | −1.531 *** | −1.995 *** | −2.608 *** |
(0.083) | (0.065) | (0.061) | (0.060) | (0.066) | (0.076) | (0.091) | (0.121) | (0.187) | (0.408) | |
mom | −0.371 *** | −0.609 *** | −0.791 *** | −0.904 *** | −0.947 *** | −1.046 *** | −1.117 *** | −1.175 *** | −1.770 *** | −3.300 *** |
(0.127) | (0.100) | (0.095) | (0.092) | (0.102) | (0.117) | (0.140) | (0.185) | (0.288) | (0.627) | |
rev | 0.846 *** | 0.812 *** | 0.721 *** | 0.799 *** | 0.878 *** | 0.939 *** | 1.006 *** | 1.121 *** | 1.322 *** | 1.588 *** |
(0.057) | (0.044) | (0.042) | (0.041) | (0.045) | (0.052) | (0.062) | (0.082) | (0.128) | (0.279) | |
dummy | −0.101 | −0.188 | −0.312 ** | −0.319 *** | −0.375 *** | −0.330 ** | −0.423 ** | −0.413 * | −0.134 | −0.458 |
(0.167) | (0.131) | (0.124) | (0.120) | (0.134) | (0.153) | (0.183) | (0.243) | (0.377) | (0.821) |
Lower Quantiles | Middle Quantiles | Upper Quantiles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.85 | 0.95 | |
gvt | 0.009 *** | 0.015 *** | 0.014 *** | 0.012 *** | 0.012 *** | 0.016 *** | 0.018 *** | 0.018 *** | 0.011 ** | −0.002 |
(0.003) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.003) | (0.004) | (0.005) | (0.012) | |
inf | 0.095 *** | 0.060 *** | 0.042 *** | 0.046 *** | 0.043 *** | 0.031 * | 0.018 | 0.017 | 0.026 | −0.133 |
(0.025) | (0.017) | (0.016) | (0.014) | (0.016) | (0.017) | (0.022) | (0.028) | (0.044) | (0.102) | |
dur | −0.126 ** | −0.223 *** | −0.200 *** | −0.168 *** | −0.182 *** | −0.158 *** | −0.166 *** | −0.188 *** | −0.188 * | −0.084 |
(0.055) | (0.039) | (0.035) | (0.031) | (0.036) | (0.038) | (0.050) | (0.063) | (0.097) | (0.227) | |
cred | 0.153 *** | 0.205 *** | 0.225 *** | 0.252 *** | 0.258 *** | 0.262 *** | 0.273 *** | 0.261 *** | 0.284 *** | 0.218 ** |
(0.022) | (0.015) | (0.014) | (0.012) | (0.014) | (0.015) | (0.020) | (0.025) | (0.039) | (0.090) | |
car | 0.036 | −0.067 | −0.052 | 0.006 | 0.138 *** | 0.232 *** | 0.396 *** | 0.702 *** | 1.044 *** | 2.473 *** |
(0.071) | (0.050) | (0.045) | (0.040) | (0.046) | (0.048) | (0.064) | (0.081) | (0.125) | (0.290) | |
size | −0.801 *** | −0.876 *** | −0.881 *** | −0.929 *** | −1.008 *** | −1.139 *** | −1.232 *** | −1.352 *** | −1.615 *** | −1.762 *** |
(0.061) | (0.043) | (0.039) | (0.034) | (0.040) | (0.042) | (0.056) | (0.070) | (0.108) | (0.252) | |
mom | 0.967 *** | 0.924 *** | 0.935 *** | 0.851 *** | 0.734 *** | 0.599 *** | 0.470 *** | 0.260 ** | −0.348 ** | −1.264 *** |
(0.091) | (0.064) | (0.058) | (0.051) | (0.059) | (0.062) | (0.083) | (0.104) | (0.160) | (0.371) | |
rev | 1.242 *** | 1.138 *** | 1.140 *** | 1.102 *** | 1.125 *** | 1.190 *** | 1.211 *** | 1.249 *** | 1.364 *** | 1.473 *** |
(0.037) | (0.026) | (0.023) | (0.020) | (0.024) | (0.025) | (0.033) | (0.042) | (0.065) | (0.151) | |
dummy | 0.007 | −0.036 | −0.092 | −0.091 | −0.126 | −0.141 * | −0.116 | −0.061 | 0.112 | 0.080 |
(0.124) | (0.087) | (0.080) | (0.070) | (0.080) | (0.085) | (0.113) | (0.142) | (0.218) | (0.507) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albulescu, C.T.; Grecu, E. Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis. Mathematics 2023, 11, 1171. https://doi.org/10.3390/math11051171
Albulescu CT, Grecu E. Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis. Mathematics. 2023; 11(5):1171. https://doi.org/10.3390/math11051171
Chicago/Turabian StyleAlbulescu, Claudiu Tiberiu, and Eugenia Grecu. 2023. "Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis" Mathematics 11, no. 5: 1171. https://doi.org/10.3390/math11051171
APA StyleAlbulescu, C. T., & Grecu, E. (2023). Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis. Mathematics, 11(5), 1171. https://doi.org/10.3390/math11051171